TY - JOUR A1 - Arlt, Tobias A1 - Grothausmann, R. A1 - Manke, I. A1 - Markötter, H. A1 - Hilger, A. A1 - Kardjilov, N. A1 - Tötzke, C. A1 - Banhart, J. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Krüger, P. A1 - Haußmann, J. A1 - Hartnig, C. A1 - Wippermann, K. T1 - Tomografische Methoden für die Brennstoffzellenforschung N2 - Aufgrund des hohen Wirkungsgrades und der vielfältigen Einsatzmöglichkeiten können Brennstoffzellen einen wichtigen Beitrag zur zukünftigen Energieversorgung leisten. Für die Optimierung der Brennstoffzellentechnik ist es erforderlich, die während des Zellbetriebs ablaufenden Prozesse zu verstehen und exakt zu charakterisieren. Ein ausbalanciertes Wassermanagement ist die Grundlage für die optimale Leistungsfähigkeit einer wasserstoffbetriebenen Zelle. Das während des Betriebs entstehende Wasser muss die Membran ausreichend befeuchten, um deren Protonenleitfähigkeit aufrechtzuerhalten. Andererseits behindern zu große Wasseransammlungen in der Zelle die Gaszufuhr durch die porösen Materialien sowie in den Kanälen der Gasverteilerstrukturen. Alterungsphänomene einzelner Zellkomponenten können die Verteilung der Wasseransammlungen und somit das Wassermanagement empfindlich stören und so die Leistungsfähigkeit der Brennstoffzelle herabsetzen. Zur Analyse der Wasserverteilung werden zerstörungsfreie, bildgebende Methoden, wie die Ex-situ-Neutronentomografie und die In-situ-Synchrotronradiografie, eingesetzt. Diese Methoden können während des Brennstoffzellenbetriebs mit weiteren Messverfahren, beispielsweise der ortsaufgelösten Stromdichtemessung, kombiniert werden. Auf diese Weise werden einzelne Komponenten, wie zum Beispiel die Gasdiffusionsschichten, charakterisiert. KW - Computertomographie KW - Elektronentomographie KW - Neutronentomographie KW - Brennstoffzelle KW - Stromdichtemessung KW - Wassermanagement PY - 2013 U6 - https://doi.org/10.3139/120.110429 SN - 0025-5300 VL - 55 IS - 3 SP - 207 EP - 213 PB - Hanser CY - München AN - OPUS4-27950 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Kannengießer, Thomas T1 - Neutron imaging of hydrogen in steels T2 - Materials Science & Technology (MS&T) 2013 CY - Montreal, Quebec, Canada DA - 2013-10-27 KW - Neutron radiography KW - Hydrogen KW - Diffusion KW - Steel PY - 2013 SP - 945 EP - 950 PB - Curran CY - Red Hook, NY AN - OPUS4-29506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manke, I. A1 - Hartnig, C. A1 - Kardjilov, N. A1 - Hilger, A. A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Banhart, J. T1 - Wasserverteilung in PEM-Brennstoffzellen - In-situ-Untersuchung mit Neutronenradiografie und -tomografie N2 - In-situ-Neutronenradiografie wird erfolgreich eingesetzt, um flüssiges Wasser in Niedertemperatur-PEM-Brennstoffzellen während des Betriebs zerstörungsfrei abzubilden und das sogenannte Wassermanagement – eine der größten Herausforderungen der Entwicklung – durch Anpassung der Materialeigenschaften zu optimieren. Dabei werden die besonderen Eigenschaften der Neutronen genutzt, die metallische Bauteile relativ leicht durchdringen, während selbst kleine Wassermengen durch ihre starke Streuung leicht nachweisbar sind. Die relativ langen Messzeiten für die Neutronentomografie werden durch den Betrieb der Zelle im “angehaltenen” Zustand realisierbar, sodass die dreidimensionale Wasserverteilung darstellbar wird. KW - Neutronen-Radiographie KW - Neutronen-Tomographie KW - Tomographische Rekonstruktionsalgorithmen KW - Brennstoffzellen KW - In-Situ-Radiologie PY - 2009 SN - 0025-5300 VL - 51 IS - 4 SP - 219 EP - 226 PB - Hanser CY - München AN - OPUS4-19221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grothausmann, R. A1 - Manke, I. A1 - Zehl, G. A1 - Dorbandt, I. A1 - Bogdanoff, P. A1 - Fiechter, S. A1 - Hentschel, Manfred P. A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Hilger, A. T1 - Charakterisierung von Katalysatormaterialien für Brennstoffzellen mittels Elektronentomografie N2 - Zur Optimierung moderner Katalysatoren für Brennstoffzellen werden diese elektronen-tomografisch charakterisiert. Die Elektronentomografie ermöglicht einzigartige Einblicke in die Nanometer-Strukturen der metallischen Katalysatorpartikel, die auf einem elektrisch leitenden, inerten Kohlenstoffträger abgeschieden werden. Die dreidimensional bildgebende Methode ermöglicht über qualitative Untersuchungen hinaus detaillierte quantitative Form- und Strukturanalysen der Katalysatormaterialien. So werden beispielsweise die Positionen der Katalysatorpartikel relativ zum Trägermaterial analysiert. Ihre Form und Einbettung in den Träger, welche die für die katalytische Reaktion maßgebliche "freie Oberfläche" definieren, werden bestimmt. Die Elektronentomografie ermöglicht somit quantitative Vergleiche zwischen verschiedenen Katalysatormaterialien und Herstellungsverfahren. Sie erweitert die Möglichkeiten der Korrelation gewünschter elektrochemischer Eigenschaften mit der Nanostruktur dieser Materialien und macht so weitere Optimierungen der Katalysatormaterialien möglich. KW - Computed tomography KW - Reconstruction algorithm KW - Electron tomography KW - Catalyst KW - Fuel cell PY - 2010 SN - 0025-5300 VL - 52 IS - 10 SP - 706 EP - 711 PB - Hanser CY - München AN - OPUS4-22072 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Williams, S. H. A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Strobl, M. A1 - Douissard, P.A. A1 - Martin, T. A1 - Riesemeier, Heinrich A1 - Banhart, J. T1 - Detection system for microimaging with neutrons N2 - A new high-resolution detector setup for neutron imaging has been developed based on infinity-corrected optics with high light collection, combined with customized mounting hardware. The system can easily be installed, handled and fitted to any existing facility, avoiding the necessity of complex optical systems or further improved electronics (CCD). This is the first time optical magnification higher than 1:1 has been used with scintillator-based neutron detectors, as well as the first implementation of infinity corrected optics for neutron imaging, achieving the smallest yet reported effective pixel size of 3.375 µm. A novel transparent crystal scintillator (GGG crystal) has been implemented with neutrons for the first time to overcome limitations of traditional powder scintillators (Li6/ZnS, Gadox). The standardized procedure for resolution measurements with the Modulation Transfer Function (MTF) is summarized to facilitate comparison between instruments and facilities. Using this new detector setup, a resolution of 14.8 µm with a field of view of 6 mm × 6 mm has been achieved while maintaining reasonable count times. These advances open a wide range of new possible research applications and allow the potential for additional future developments. KW - Instrumentation for neutron sources KW - Neutron radiography KW - Neutron detectors (cold, thermal, fast neutrons) PY - 2012 U6 - https://doi.org/10.1088/1748-0221/7/02/P02014 SN - 1748-0221 VL - 7 IS - P02014 SP - 1 EP - 26 PB - Inst. of Physics Publ. CY - London AN - OPUS4-26433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Bohner, J. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Hilger, A. A1 - Wieder, F. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Banhart, J. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, I. T1 - Three-dimensional study of compressed gas diffusion layers using synchrotron X-ray imaging N2 - We present a synchrotron X-ray tomographic study on the morphology of carbon fiber-based gas diffusion layer (GDL) material under compression. A dedicated compression device is used to provide well-defined compression conditions. A flat compression punch is employed to study the fiber geometry at different degrees of compression. Transport relevant geometrical parameters such as porosity, pore size and tortuosity distributions are calculated. The geometric properties notably change upon compression which has direct impact on transport conditions for gas and fluid flow. The availability of broad 3D paths, which are most important for the transport of liquid water from the catalyst layer through the GDL, is markedly reduced after compression. In a second experiment, we study the influence of the channel-land-pattern of the flow-field on shape and microstructure of the GDL. A flow-field compression punch is employed to reproduce the inhomogeneous compression conditions found during fuel cell assembly. While homogenously compressed underneath the land the GDL is much less and inhomogeneously compressed under the channel. The GDL material extends far into the channel volume where it can considerably influence gas and fluid flow. Loose fiber endings penetrate deeply into the channel and form obstacles for the discharge of liquid water droplets. KW - Synchrotron X-ray tomography KW - Gas diffusion layer (GDL) KW - Microstructure KW - Water transport path KW - Pore size analysis KW - Geometrical tortuosity PY - 2014 U6 - https://doi.org/10.1016/j.jpowsour.2013.12.062 SN - 0378-7753 VL - 253 SP - 123 EP - 131 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-29979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tengattini, A A1 - Kardjilov, N A1 - Helfen, L A1 - Douissard, P A A1 - Lenoir, N A1 - Markötter, Henning A1 - Hilger, A A1 - Arlt, T A1 - Paulisch, M A1 - Turek, T A1 - Manke, Ingo T1 - Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator N2 - A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 μm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here. KW - Neutron imaging KW - Scintillator KW - Resolution PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549836 VL - 30 IS - 9 SP - 14461 EP - 14477 PB - Optica CY - Washington, DC AN - OPUS4-54983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, H A1 - Paulisch, M C A1 - Gebhard, M A1 - Osiewacz, J A1 - Kutter, M A1 - Hilger, A A1 - Arlt, T A1 - Kardjilov, N A1 - Ellendorff, B A1 - Beckmann, F A1 - Markötter, Henning A1 - Luik, M A1 - Turek, T A1 - Manke, I A1 - Roth, C T1 - Development of a Modular Operando Cell for X-ray Imaging of Strongly Absorbing Silver-Based Gas Diffusion Electrodes N2 - Metal-based gas diffusion electrodes are utilized in chlor-alkali electrolysis or electrochemical reduction of carbon dioxide, allowing the reaction to proceed at high current densities. In contrast to planar electrodes and predominantly 2D designs, the industrially required high current densities can be achieved by intense contact between the gas and liquid phase with the catalytically active surfaces. An essential asset for the knowledge-based design of tailored electrodes is therefore in-depth information on electrolyte distribution and intrusion into the electrode’s porous structure. Lab-based and synchrotron radiography allow for monitoring this process operando. Herein, we describe the development of a cell design that can be modularly adapted and successfully used to monitor both the oxygen reduction reaction and the electrochemical reduction of CO2 as exemplary and currently very relevant examples of gas-liquid reactions by only minor modifications to the cell set-up. With the reported cell design, we were able to observe the electrolyte distribution within the gas diffusion electrode during cell operation in realistic conditions. KW - X-Ray imaging KW - Gas diffusion electrodes KW - Operando cell PY - 2022 U6 - https://doi.org/10.1149/1945-7111/ac6220 VL - 169 IS - 4 SP - 044508 PB - IOP science AN - OPUS4-55027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Dong, K. A1 - Mazzio, K. A. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Heinemann, T. A1 - Manke, I. A1 - Adelhelm, P. T1 - Phase transformation and microstructural evolution of CuS electrodes in solid-state batteries probed by in situ 3D X-ray tomography N2 - Copper sulfide shows some unique physico-chemical properties that make it appealing as a cathode active material (CAM) for solid-state batteries (SSBs). The most peculiar feature of the electrode reaction is the reversible formation of μm-sized Cu crystals during cycling, despite its large theoretical volume change (75%). Here, the dynamic microstructural evolution of CuS cathodes in SSBs is studied using in situ synchrotron X-ray tomography. The formation of μm-sized Cu within the CAM particles can be clearly followed. This process is accompanied by crack formation that can be prevented by increasing the stack pressure from 26 to 40 MPa. Both the Cu inclusions and cracks show a preferential orientation perpendicular to the cell stack pressure, which can be a result of a z-oriented expansion of the CAM particles during lithiation. In addition, cycling leads to a z-oriented reversible displacement of the cathode pellet, which is linked to the plating/stripping of the Li counter electrode. The pronounced structural changes cause pressure changes of up to 6 MPa within the cell, as determined by operando stack pressure measurements. Reasons for the reversibility of the electrode reaction are discussed and are attributed to the favorable combination of soft materials. KW - Copper sulfide KW - Crack evolution KW - Digital volume correlation KW - Phase transformation KW - Solid-state batteries PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564577 IS - 2203143 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-56457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, F. A1 - Wang, C. A1 - Osenberg, M. A1 - Dong, K. A1 - Zhang, S. A1 - Yang, C. A1 - Wang, Y. A1 - Hilger, A. A1 - Zhang, J. A1 - Dong, S. A1 - Markötter, Henning A1 - Manke, I. A1 - Cui, G. T1 - Clarifying the Electro-Chemo-Mechanical Coupling in Li10SnP2S12 based All-Solid-State Batteries N2 - A fundamental clarification of the electro-chemo-mechanical coupling at the solid–solid electrode|electrolyte interface in all-solid-state batteries (ASSBs) is of crucial significance but has proven challenging. Herein, (synchrotron) X-ray tomography, electrochemical impedance spectroscopy (EIS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), and finite element analysis (FEA) modeling are jointly used to decouple the electro-chemo-mechanical coupling in Li10SnP2S12-based ASSBs. Non-destructive (synchrotron) X-ray tomography results visually disclose unexpected mechanical deformation of the solid electrolyte and electrode as well as an unanticipated evolving behavior of the (electro)chemically generated interphase. The EIS and TOFSIMS probing results provide additional information that links the interphase/electrode properties to the overall battery performance. The modeling results complete the picture by providing the detailed distribution of the mechanical stress/strain and the potential/ionic flux within the electrolyte. Collectively, these results suggest that 1) the interfacial volume changes induced by the (electro)chemical reactions can trigger the mechanical deformation of the solid electrode and electrolyte; 2) the overall electrochemical process can accelerate the interfacial chemical reactions; 3) the reconfigured interfaces in turn influence the electric potential distribution as well as charge transportation within the SE. These fundamental discoveries that remain unreported until now significantly improve the understanding of the complicated electro-chemo-mechanical couplings in ASSBs. KW - All-solid-state batteries KW - Lithium metal batteries KW - Solid electrolytes KW - Sulfide solid electrolytes KW - Synchrotron X-ray tomography PY - 2022 U6 - https://doi.org/10.1002/aenm.202103714 SN - 1614-6832 SP - 2103714 PB - Wiley VHC-Verlag AN - OPUS4-54431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -