TY - JOUR A1 - Jin, Z. A1 - Geißler, Daniel A1 - Qiu, X. A1 - Wegner, Karl David A1 - Hildebrandt, N. T1 - A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA N2 - The importance of microRNA (miRNA) dysregulation for the development and progression of diseases and the discovery of stable miRNAs in peripheral blood have made these short-sequence nucleic acids next-generation biomarkers. Here we present a fully homogeneous multiplexed miRNA FRET assay that combines careful biophotonic design with various RNA hybridization and ligation steps. The single-step, single-temperature, and amplification-free assay provides a unique combination of performance parameters compared to state-of-the-art miRNA detection technologies. Precise multiplexed quantification of miRNA-20a, -20b, and -21 at concentrations between 0.05 and 0.5 nm in a single 150 mL sample and detection limits between 0.2 and 0.9 nm in 7.5 mL serum samples demonstrate the feasibility of both highthroughput and point-of-care clinical diagnostics. KW - Clinical diagnostics KW - FRET KW - MicroRNA KW - Multiplexing KW - Time-gated fluorescence detection PY - 2015 U6 - https://doi.org/10.1002/anie.201504887 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 34 SP - 10024 EP - 10029 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -