TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Müller, Bernd R. A1 - Hentschel, M. P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing T2 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - Talbot- Lau interferometry KW - Phase grating KW - Non-destructive testing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383163 SP - Tu_3_G_2, 1 EP - 9 AN - OPUS4-38316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilger, A. A1 - Kardjilov, N. A1 - Lange, A. A1 - Kupsch, Andreas A1 - Hentschel, M. P. A1 - Manke, I. T1 - Neutron darkfield imaging of fiber composites JF - Materials Testing N2 - While X-ray based darkfield imaging with grating interferometers is already widely used, darkfield imaging with neutrons has still a relatively small user community focused mostly on magnetic materials. Here, we demonstrate the application of neutron darkfield imaging byTalbot-Lau type grating interferometry to fiber reinforced plastics. Common carbon and glass fiber composites have been investigated including characteristic damage structures. The darkfield images show a strong signal response caused by fiber delamination, suitable fiber direction, particles, pores and cracks. The basic principles of neutron darkfield imaging applied to fiber composites are highlighted. KW - Neutron radiography KW - Darkfield imaging KW - Talbot-Lau interferometer KW - Fiber composites KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.1515/mt-2020-0103 SN - 2195-8572 SN - 0025-5300 VL - 63 IS - 7 SP - 623 EP - 629 PB - De Gruyter CY - Berlin AN - OPUS4-53077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -