TY - CONF A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, Enrico A1 - Haamkens, Frank A1 - Wittmann, Jochen ED - Aulova, Alexandra ED - Rogelj Ritonja, Alenka ED - Emri, Igor T1 - Experimental feasibility study about moisture in building materials measured with bluetooth N2 - Structural health monitoring contributes to early damage detection in the built infrastructure. During the last two decades, the sensor networks transferred from wired to wireless sensor networks. Several methods exist to measure moisture in building materials. Most of the introduced commercial humidity measurement methods as provide information about the local or near surface moisture. A feasibility study is presented to demonstrate, how the Received Signal Strength Indicator (RSSI) of a BlueTooth® Low Energy (BLE) signal, transmitted from the BLE-module embedded in building materials with changing moisture content. The BLE-module communicates with a mobile Smart Device as tablet or mobile phone. The RSSI indicates to what extend the received signal strength is changed due to moisture, while the transmitted signal strength remains constant. T2 - The 33rd Danubia Adria Symposium on Advances in experimental mechanics CY - Portoroz, Slovenia DA - 20.09.2016 KW - Bluetooth KW - Moisture KW - Measurement KW - Water dipoles KW - RSSI PY - 2016 SN - 978-961-94081-0-0 SP - 60 EP - 61 PB - SSEM--Slovene Society of Experimental Mechanics CY - Ljubljana, Slovenia AN - OPUS4-38086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, Enrico A1 - Haamkens, Frank A1 - Wittmann, Jochen T1 - Experimental feasibility study about moisture in building materials measured with bluetooth N2 - This feasibility study presents how the Received Signal Strength Indicator (RSSI) of a Bluetooth® Low Energy (BLE) signal, transmitted from the BLE-module embedded in building materials with changing moisture content, is damped. The BLE-module (TRANSMITTER) communicates with a mobile Smart Device as tablet or mobile phone (RECEIVER) [Fig. 1]. The measured RSSI indicates to what extend the received signal strength is changed due to moisture, while the transmitted signal strength remains constant. T2 - Danube Adria Symposium DAS2016 CY - Portoroz, Slovenia DA - 20.09.2016 KW - Bluetooth Low Energy KW - Moisture KW - Experimental study PY - 2016 AN - OPUS4-38522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, E. A1 - Wittmann, J. ED - Cosmi, F. T1 - Experimental modeling approach for determining the moisture damping exponent of a Bluetooth Low Energy signal in moist building material N2 - The presented development of a damping model is a research component of an experimental feasibility study about moisture in building materials measured with Bluetooth® Low Energy (BLE) signals. This study may be part of a structural health monitoring aiming on early damage detection in the built infrastructure and is increasingly focusing on wireless sensor Network technology. It is investigated, how the Received Signal Strength Indicator (RSSI) of a BLE signal, transmitted from the BLE-module embedded in building materials with changing moisture content is damped. The BLE-module communicates with a mobile Smart Device as tablet or mobile phone via 2.45 GHz-ISMfrequency band where water dipoles start to oscillate. If the BLE-signal transfers through a moist material, the moisture Content influences the RSS-Indicator. The damping model demonstrates this damping effect on RSSI by the abstraction of the reality observed in a real system. T2 - 34th Danube Adria Symposium CY - Trieste, Italy DA - 19.09.2017 KW - Moisture damping coefficient, KW - Buliding materials KW - Bluetooth Low Energy KW - RSSI KW - Experimental approach PY - 2017 SN - 978-88-8303-863-1 U6 - https://doi.org/https://www.openstarts.units.it/handle/10077/14834 SP - 141 EP - 142 CY - Trieste, Italy AN - OPUS4-44528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, E. A1 - Wittmann, H.-J. T1 - Experimental modeling approach for determining the moisture damping exponent of a bluetooth low energy signal in moist building material N2 - The presented development of a damping model is a research component of an experimental feasibility study about moisture in building materials measured with Bluetooth® Low Energy (BLE) signals. This study may be part of a structural health- and long-term monitoring aiming at early damage detection in the built infrastructure and is increasingly focusing on wireless sensor network technology. It is investigated, how the Received Signal Strength Indicator (RSSI) of a BLE signal, transmitted from the BLE-module embedded in building materials with changing moisture content is damped. The aim of the modelling is the derivation of a damping equation for the formal model to determine the moisture damping exponent to finding a correlation. T2 - 34th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - BLE Bluetooth low energy KW - Sensor network KW - RSSI Received Signal Strength Indicator KW - Structural Health Monitoring KW - Moisture measurements PY - 2018 U6 - https://doi.org/10.1016/j.matpr.2018.08.124 SN - 2214-7853 VL - 5 IS - Issue 13, Part 2 SP - 26469 EP - 26792 PB - Elsevier Ltd. CY - Radarweg 29, 1043 NX Amsterdam, The Netherlands AN - OPUS4-47171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -