TY - JOUR A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Helmerich, Rosemarie A1 - Hille, Falk A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Bland, S. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. KW - UHPC KW - Impact KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength KW - E-modulus PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S2214785319305115?dgcid=author U6 - https://doi.org/10.1016/j.matpr.2019.03.152 SN - 2214-7853 VL - 12 IS - 2 SP - 474 EP - 483 PB - Elsevier Ltd CY - Amsterdam AN - OPUS4-48181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie A1 - Moldenhauer, Laura A1 - Voigt, Gerrit A1 - Köppe, E. T1 - Considerations for identification of moisture in building materials using Bluetooth (R) N2 - The vulnerability of low-quality concrete of some bridges to ageing and deterioration while they are exposed to environmental conditions during their service life, influence of growing population and climate changes, is a well-known effect and requires survey. For survey, the development of a low cost, cost-efficient sensor network to be embedded for continuous or attached to the surface for periodic monitoring is essential. Changing ground water conditions, flood or even leakage in fresh or disposal of waste water can lead to in-creased moisture content in building materials and structural elements as walls or floors. Moisture allows the transport of other adverse chemicals that might reduce the durability of structures. The paper presents a feasibility study about the capability of microwave modules as bluetooth® or ZigBee with frequency range at 2,4 GHz to create advanced Wireless Sensor Networks (WSN) for estimation and visualization of moisture distribution in infrastructure assets. It was found that the value of the received signal strength indication (RSSI) depends on the moisture content and can be the basis for the moisture distribution inside a massive structure. The microwave modules may be used to compose networks outside and inside of building materials or structural elements. The higher the number of connections between BLE modules, the more precise and the more distant information can be obtained from the network. Mesh networking was applied to increase the quantitative information. T2 - 9th International Conference on Bridge Maintenance, Safety and Management (IABMAS) CY - Melbourne, Australia DA - 09.07.2018 KW - Structural Health Monitoring KW - Moisture KW - Bluetooth PY - 2018 SN - 978-1-315-18939-0 SN - 978-1-138-73045-8 SP - 2752 EP - 2759 AN - OPUS4-50340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie T1 - Practical applications of recent BAM-research results of NDT and monitoring in civil engineering N2 - Nondestructive testing and monitoring was of mayor interest in BAM-research related to the survey of civil engineering structures during the last two decades. Three case studies about research projects carried out at BAM were presented. All three projects focussed on the survey of parameters and safety related tasks in bridge engineering and inspection. First, the monitoring of the Berlin main station was presented with focus on the sensors developed specifically for this project. The second case study presented and application of guided ultrasonic waves to CFRP-strengthened bridges. The method was sucsessully applied to two of four different strengthening measures carried out min. 10 years ago. The last project presented the feasibility study of a network consisting of simple Bluetooth modules to survey changes in the moisture content in sand and massive concrete. T2 - Workshop CY - University of New South Wales, Sydney, Australia DA - 17.07.2018 KW - Monitoring KW - Wireless sensor network (WSN), KW - NDT KW - Guided waves KW - Bluetooth modules KW - Inspection KW - Civil infrastructure PY - 2018 AN - OPUS4-45657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Hille, Falk A1 - Helmerich, Rosemarie A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - E-modulus KW - Impact KW - UHPC KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength PY - 2018 UR - https://www.das2018.ro/ SN - 978-606-23-0874-2 SP - 11 EP - 12 PB - Editura Printech CY - Bucarest, Romania AN - OPUS4-47001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, E. A1 - Wittmann, H.-J. T1 - Experimental modeling approach for determining the moisture damping exponent of a bluetooth low energy signal in moist building material N2 - The presented development of a damping model is a research component of an experimental feasibility study about moisture in building materials measured with Bluetooth® Low Energy (BLE) signals. This study may be part of a structural health- and long-term monitoring aiming at early damage detection in the built infrastructure and is increasingly focusing on wireless sensor network technology. It is investigated, how the Received Signal Strength Indicator (RSSI) of a BLE signal, transmitted from the BLE-module embedded in building materials with changing moisture content is damped. The aim of the modelling is the derivation of a damping equation for the formal model to determine the moisture damping exponent to finding a correlation. T2 - 34th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - BLE Bluetooth low energy KW - Sensor network KW - RSSI Received Signal Strength Indicator KW - Structural Health Monitoring KW - Moisture measurements PY - 2018 U6 - https://doi.org/10.1016/j.matpr.2018.08.124 SN - 2214-7853 VL - 5 IS - Issue 13, Part 2 SP - 26469 EP - 26792 PB - Elsevier Ltd. CY - Radarweg 29, 1043 NX Amsterdam, The Netherlands AN - OPUS4-47171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Helmerich, Rosemarie ED - Hu, Chang Bin T1 - Engineering Education in Europe N2 - The book chapter first analyses the history of higher education in Europe. Second step describes the current Bologna process. Finally, the rule of the Bundesanstalt für Materialforschung und -Prüfung (BAM) in supporting PhD-students during their research and preparation of theire theses in cooperation with Universities is described KW - History of education KW - Bologna process KW - BAM PY - 2018 SN - 978-7-114-14938-2 SP - 61 EP - 71 PB - China Communication Press Co., Ltd. CY - Fuzhou, China ET - 1. AN - OPUS4-46871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie T1 - Feasibility study about monitoring moisture inside massive concrete N2 - Current measurement methods for dertermination of moisture analyse near-surface moisture distribution. During an externally funded research project, microwaves in the Bluetooth(R) frequency band width were utilized for Setting-up a module network. Without additional sensors, the feasibility study confirmed that threedimensional data can collected to obtain a threedimensional data set as basis for the estimation of moisture distribution inside massive building materials. T2 - 2nd International Conference on Ultrahigh Performance Concrete, UHPC2018 CY - Fuzhou, China DA - 07.11.2018 KW - Moisture KW - Bluetooth KW - Microwaves KW - Monitoring PY - 2018 AN - OPUS4-46872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hong, Shuxian A1 - Wiggenhauser, Herbert A1 - Helmerich, Rosemarie A1 - Peng, B.D. A1 - Xing, D. F. T1 - Long-term monitoring of reinforcement corrosion in concrete using ground penetrating radar N2 - A new method for periodically monitoring reinforcement corrosion in concrete with Ground-Penetrating Radar (GPR) is proposed and a ten-year long-term corrosion periodic monitoring experiment is reported. GPR historical data was taken in different years, under different conditions. In order to align and normalize the obtained images properly prior to effectively performing any automatic defect detection, image registration techniques based on mutual-information are employed, and a new signal processing scheme is proposed for normalizing the intensity of GPR images. Then, the processed image results can be used to compare and find out the change of GPR detection due to corrosion. KW - Steel reinforced concrete KW - Atmospheric corrosion KW - Pitting corrosion PY - 2017 U6 - https://doi.org/10.1016/j.corsci.2016.11.003 SN - 0010-938X VL - 114 SP - 123 EP - 132 PB - Elsevier Ltd. AN - OPUS4-38346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, E. A1 - Wittmann, J. ED - Cosmi, F. T1 - Experimental modeling approach for determining the moisture damping exponent of a Bluetooth Low Energy signal in moist building material N2 - The presented development of a damping model is a research component of an experimental feasibility study about moisture in building materials measured with Bluetooth® Low Energy (BLE) signals. This study may be part of a structural health monitoring aiming on early damage detection in the built infrastructure and is increasingly focusing on wireless sensor Network technology. It is investigated, how the Received Signal Strength Indicator (RSSI) of a BLE signal, transmitted from the BLE-module embedded in building materials with changing moisture content is damped. The BLE-module communicates with a mobile Smart Device as tablet or mobile phone via 2.45 GHz-ISMfrequency band where water dipoles start to oscillate. If the BLE-signal transfers through a moist material, the moisture Content influences the RSS-Indicator. The damping model demonstrates this damping effect on RSSI by the abstraction of the reality observed in a real system. T2 - 34th Danube Adria Symposium CY - Trieste, Italy DA - 19.09.2017 KW - Moisture damping coefficient, KW - Buliding materials KW - Bluetooth Low Energy KW - RSSI KW - Experimental approach PY - 2017 SN - 978-88-8303-863-1 U6 - https://doi.org/https://www.openstarts.units.it/handle/10077/14834 SP - 141 EP - 142 CY - Trieste, Italy AN - OPUS4-44528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie T1 - Active thermography N2 - Active thermography is introduced as tool for diagnostics in civil engineering structures. Aside from basic information, examples for applications of active thermography in different types of structures was presented. Active thermography was applied in historic structures to reveal former components or even ancient openings. Other examples present active thermography as a tool for nondestructive detection of debonding in CFRP strengthened structures. The way is explained, how the system was optimized for different materials. T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 05.07.2017 KW - Active thermography KW - Strengthening KW - Nondestructive testing KW - Civil structures PY - 2017 AN - OPUS4-42920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -