TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - Toolbox with Nondestructive Testing Methods for Condition Assessment of Railway Bridges JF - Transportation research record KW - Non-destructive testing KW - Automated scanning KW - Condition assessment KW - Bridge assessment KW - Ultrasonicecho KW - Impulse radar KW - Impact echo PY - 2006 SN - 0361-1981 IS - 1943 SP - 65 EP - 73 PB - National Research Council CY - Washington, DC AN - OPUS4-14293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Trela, Christiane A1 - Bien, J. A1 - Kaminski, T. A1 - Bernardini´, G. T1 - Multi-tool inspection and numerical of an old masonry arch bridge JF - Structure and infrastructure engineering N2 - Complex special inspection of an old masonry arch bridge according to the Guideline on Inspection and Condition Assessment of Railway Bridges and numerical analysis of the structure are presented. The guideline summarises recommendations for the step-by-step investigation of railway bridges applying enhanced methods developed during the EU-funded project Sustainable Bridges. For the investigation of the arch barrel, the ballast parameters and the inner structure of the backfill behind the arch barrel a number of various advanced non-destructive and minor-destructive testing methods were applied. Deformation of the structure during load tests was measured using three independent measuring systems: laser vibrometer, LVDT and microwave radar. Results of calculations performed with 2D and 3D models based on FEM are compared with the field load tests. Sensitivity of the ultimate load of the structure to investigated parameters is studied in FE model. Some general conclusions according to methods of testing and modelling of masonry arch bridges are presented and discussed. KW - Masonry bridges KW - Non-destructive testing KW - Bridge inspection KW - Finite element method PY - 2012 SN - 1573-2479 VL - 8 IS - 1 SP - 27 EP - 39 PB - Taylor & Francis CY - London [u.a.] AN - OPUS4-27425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Trela, Christiane A1 - Bien, J. A1 - Kaminski, T. A1 - Bernardini, G. T1 - Multi-tool inspection and numerical analysis of an old masonry arch bridge JF - Structure & infrastructure engineering N2 - Complex special inspection of an old masonry arch bridge according to the Guideline on Inspection and Condition Assessment of Railway Bridges and numerical analysis of the structure are presented. The guideline summarises recommendations for the step-by-step investigation of railway bridges applying enhanced methods developed during the EU-funded project Sustainable Bridges. For the investigation of the arch barrel, the ballast parameters and the inner structure of the backfill behind the arch barrel a number of various advanced non-destructive and minor-destructive testing methods were applied. Deformation of the structure during load tests was measured using three independent measuring systems: laser vibrometer, LVDT and microwave radar. Results of calculations performed with 2D and 3D models based on FEM are compared with the field load tests. Sensitivity of the ultimate load of the structure to investigated parameters is studied in FE model. Some general conclusions according to methods of testing and modelling of masonry arch bridges are presented and discussed. KW - Masonry bridges KW - Non-destructive testing KW - Bridge inspection KW - Finite element method PY - 2010 DO - https://doi.org/10.1080/15732471003645666 SN - 1573-2479 SN - 1744-8980 IS - NSIE_A_465075 SP - 1 EP - 13 PB - Taylor & Francis CY - London AN - OPUS4-22838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Milmann, Boris A1 - Wöstmann, Jens T1 - Non-destructive detection of surface-bond defects in carbon composite-strengthened concrete structures JF - Structure and infrastructure engineering N2 - For almost 15 years, carbon fibre-reinforced polymer (CFRP) plates and sheets have been used for strengthening and repair of civil engineering structures. CFRP plates were applied to upgrade structures for change in use or increasing traffic load. CFRP laminates have also been used to repair deteriorated structures such as multi-storey parking or bridges. The execution quality and condition of the strengthening measure in terms of bond integrity were neither monitored nor tested systematically. Inspectors eventually applied simple hammer knocking during regular main inspection for subjective noise distinction as a measure for eventual insufficient bond. This paper presents the feasibility and the limitations of low-frequency transversal ultrasonic waves with dry-coupling point-contact sensors for inspection and defect detection between CFRP laminate and concrete surfaces. The German Centre of Competence in Civil Engineering (DIBt) has initiated a national research project [Helmerich et al. (2012). Condition analysis of bonded CFRP-applications on concrete structures by means of non-destructive testing [in German: Zustandsuntersuchung von CFK-Klebeverstärkungen an Betonbauteilen mittels zerstörungsfreier Prüfung (ZfP)]. Final, internal project report], carried out at the Federal Institute for Materials Research and Testing (BAM), Germany. The aim of the project was to present a potential non-destructive testing method for bond defect detection as a measure for the durability of the strengthening system more than 10 years after application. KW - Concrete bridges KW - Strengthening KW - Non-destructive testing KW - Composite materials KW - Durability KW - Inspection PY - 2015 DO - https://doi.org/10.1080/15732479.2013.879322 SN - 1573-2479 VL - 11 IS - 1 SP - 3 EP - 14 PB - Taylor & Francis CY - London [u.a.] AN - OPUS4-33086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -