TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kohlhoff, Harald A1 - Helmerich, Rosemarie A1 - Daum, Werner ED - Aulova, Alexandra ED - Rogelj Ritonja, A. ED - Emri, I. T1 - Long-Term measurement of vertical displacements at the outer concrete bridges of the Berlin Main Station N2 - Berlin Main Station is the largest multi-level station in Europe. Its daily passenger number amounts to over 300.000. Structures built for such a large number of people require a high-level safety standard. The station was built on the inner city site of the historic Lehrter Bahnhof. The conditions for building and start of operation were challenging by several reasons. The typical sandy ground with a high level of groundwater makes the permanent static stability of such a complex structure difficult. Several completed, ongoing, and planned construction activities in the immediate vicinity of the station influence the ground settlement of the whole area. On basis of the structural design an impact prediction was calculated, which expected certain vertical displacements particularly between the single columns of the outer concrete bridges of the building. These columns support the glass roof construction, which only allows a defined limit of displacement. In order to avoid damage, a concept for monitoring and adjusting potentially occurring displacements was developed for installation at the outer bridges of the station. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Berlin Main Station KW - Differential displacements KW - Hydraulic levelling system KW - Laser-based displacement measuring system KW - Monitoring KW - Strain measurements PY - 2016 SN - 978-961-94081-0-0 SP - 166 EP - 167 CY - Ljubljana AN - OPUS4-37646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie ED - Bittencourt, Tulio Nogueira ED - Frangopol, Dan ED - Beck, Andre T1 - Bridge knowledge management using ontologies N2 - The amount of new knowledge about bridges, about the materials they are made of, deterioration processes for the different materials, typical defects, methods for early detection of them and related causes for damage increases day by day. Often the knowledge remains in the heads of ageing specialists leaving the inspection teams or universities. This paper presents a feasibility study about application of a new tool from artificial in-telligence, ontology, for modeling and organizing bridge engineering knowledge from a domain expert´s view. Exemplarily, knowledge and not only data from bridge testing in the field and in the laboratory were formalized for the presentation of the functionality of ontologies. The open source ontology editor Protégé was ap-plied to test the feasibility. T2 - IABMAS Conference 2016 CY - Foz Do Iguacu, Brazil DA - 26.06.2016 KW - Knowledge Representation KW - Ontology KW - Bridge Knowledge KW - Riveted Bridges PY - 2016 SN - ISBN 9781138028517 PB - CRC Press AN - OPUS4-38082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, Enrico A1 - Haamkens, Frank A1 - Wittmann, Jochen ED - Aulova, Alexandra ED - Rogelj Ritonja, Alenka ED - Emri, Igor T1 - Experimental feasibility study about moisture in building materials measured with bluetooth N2 - Structural health monitoring contributes to early damage detection in the built infrastructure. During the last two decades, the sensor networks transferred from wired to wireless sensor networks. Several methods exist to measure moisture in building materials. Most of the introduced commercial humidity measurement methods as provide information about the local or near surface moisture. A feasibility study is presented to demonstrate, how the Received Signal Strength Indicator (RSSI) of a BlueTooth® Low Energy (BLE) signal, transmitted from the BLE-module embedded in building materials with changing moisture content. The BLE-module communicates with a mobile Smart Device as tablet or mobile phone. The RSSI indicates to what extend the received signal strength is changed due to moisture, while the transmitted signal strength remains constant. T2 - The 33rd Danubia Adria Symposium on Advances in experimental mechanics CY - Portoroz, Slovenia DA - 20.09.2016 KW - Bluetooth KW - Moisture KW - Measurement KW - Water dipoles KW - RSSI PY - 2016 SN - 978-961-94081-0-0 SP - 60 EP - 61 PB - SSEM--Slovene Society of Experimental Mechanics CY - Ljubljana, Slovenia AN - OPUS4-38086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie ED - Frangopol, Dan ED - Bittencourt, Tulio N. ED - Beck, André T. T1 - Bridge knowledge management using ontologies N2 - The amount of new knowledge about bridges, materials they are made of, deterioration processes for the different materials, resulting defects, methods for early detection of them and related causes for damage increases day by day. Often the knowledge remains in the heads of ageing specialists leaving the inspection teams or universities. This paper presents a feasibility study about application of a new tool from artificial intelligence to model and organize bridge engineering knowledge from a domain expert´s view. Exemplarily, knowledge and not only data from bridge testing in the field and in the laboratory were formalized for the presentation of the functionality of ontologies. T2 - IABMAS Conference 2016 CY - Foz Do Iguacu, Brasilien DA - 26.06.2016 KW - Ontology KW - riveted steel bridges KW - Bridge knowledge KW - representation of knowledge PY - 2016 SN - 1138028517 SP - 455 EP - 455 PB - CRC PRess Balkema CY - Leiden, Netherlands AN - OPUS4-38494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie A1 - Häcker, Ralf A1 - Zunkel, Astrid ED - Biliszczuk, Jan ED - Bien, Jan T1 - Cast iron arch bridges - part of the world heritage N2 - Cast iron arch bridges were built in the late 18th and early 19th century across Europe. After the famous Iron Bridge in the Ironbridge Gorge in Coalbrookdale in England, being now part of the UNESCO world heritage, many cast iron bridges followed and substituted timber bridges. A series of cast iron bridges has been built in central Europe, in Laasan, Breslau, (now Wrocław), in Berlin, Potsdam, Bad Muskau and Schwerin. The paper gives an overview about the current state of some remaining cast iron arch bridges, typical damage cases, material properties and rehabilitation. Most of the old cast iron arch bridges serve as pedestrian bridges. Some of these bridges have been strengthened to increase the traffic load. Different rehabilitation measures as substitution of parts of the bridges and strengthening using Carbon Reinforced Polymers (CFRP) are discussed. T2 - Arch 2016 CY - Wroclaw, Poland DA - 05.10.2016 KW - Arch bridges KW - Cast iron KW - Materials parameters KW - Rehabilitytion PY - 2016 SN - 978-83-7125-265-5 SP - 194 EP - 197 PB - Dolnośląskie wydawnictwo edukacyjne CY - Wroclaw, Poland AN - OPUS4-38476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -