TY - JOUR A1 - Hong, Shuxian A1 - Wiggenhauser, Herbert A1 - Helmerich, Rosemarie A1 - Peng, B.D. A1 - Xing, D. F. T1 - Long-term monitoring of reinforcement corrosion in concrete using ground penetrating radar JF - Corrosion Science N2 - A new method for periodically monitoring reinforcement corrosion in concrete with Ground-Penetrating Radar (GPR) is proposed and a ten-year long-term corrosion periodic monitoring experiment is reported. GPR historical data was taken in different years, under different conditions. In order to align and normalize the obtained images properly prior to effectively performing any automatic defect detection, image registration techniques based on mutual-information are employed, and a new signal processing scheme is proposed for normalizing the intensity of GPR images. Then, the processed image results can be used to compare and find out the change of GPR detection due to corrosion. KW - Steel reinforced concrete KW - Atmospheric corrosion KW - Pitting corrosion PY - 2017 DO - https://doi.org/10.1016/j.corsci.2016.11.003 SN - 0010-938X VL - 114 SP - 123 EP - 132 PB - Elsevier Ltd. AN - OPUS4-38346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hong, Shuxian A1 - Lai Wai-Lok, Wallace A1 - Wilsch, Gerd A1 - Helmerich, Rosemarie A1 - Helmerich, R. A1 - Günther, Tobias A1 - Wiggenhauser, Herbert T1 - Periodic mapping of reinforcement corrosion in intrusive chloride contaminated concrete with GPR JF - Construction and building materials N2 - This paper presents an experimental effort for developing a novel reinforcement corrosion monitoring technique based on Ground Penetrating Radar (GPR). Experiments were carried out to periodically monitor the accelerated reinforcement corrosion process with GPR. The data were processed in both time and time–frequency domains to investigate the tendencies of GPR signal attribute changes related with corrosion, moisture and chloride contamination. Data processing methods were proposed to visualize the reinforcement corrosion and chloride distribution with target specified signal attribute mapping. Half-Cell Potential (HCP) and Laser-Induced Breakdown Spectroscopy (LIBS) methods were employed to verify the GPR observations. KW - Reinforcement corrosion KW - Chloride contamination KW - Periodic monitoring KW - Ground penetrating radar PY - 2014 DO - https://doi.org/10.1016/j.conbuildmat.2014.06.019 SN - 0950-0618 VL - 66 SP - 671 EP - 684 PB - Elsevier Science CY - Amsterdam AN - OPUS4-31397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolf, Julia A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.-M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.-Ö. ED - Xu, Y. L. ED - Zhu, S. ED - Xia, Y. ED - Ni, Y.Q. ED - Law, S.S. ED - Yin, J. H. ED - Su, Z.Q. T1 - Ultrasound based monitoring system for concrete monolithic objects T2 - SHMII-6 - 6th International conference on structural health monitoring of intelligent infrastructure (Proceedings) N2 - Ultrasound sensors should be embedded into concrete for monitoring concrete properties. These new longitudinal wave sensors with a center frequency of 60 kHz were examined regarding their suitability for ultrasonic measurements in concrete structures in terms of emission characteristics, sensitivity and frequency ränge. For the measurement of the radiation patterns, the sensors were embedded vertically and horizontally in concrete cylinders. The directivity pattern was measured using a laser vibrometer. The sensitivity of the sensor was determined in water using different sensors of the same type. It shows changes in the signal amplitude as well as variations in the frequency ränge for different transmitter-receiver combinations. The attenuation of the concrete affects the achievable resolution of the measurements and thus, the maximum possible spacing of the sensors within a concrete element. Experimental tests helped optimizing the distances with respect to the required resolution and the effort of embedding the sensors. The signal attenuation in the concrete was measured in the frequency ränge of 60 kHz in response to various degrees of reinforcement and grain size. For this purpose, the sensors were cast at different distances in the specimens studied. The recorded Signals were evaluated for their amplitude and frequency spectrum. T2 - SHMII-6 - 6th International conference on structural health monitoring of intelligent infrastructure CY - Hong Kong, China DA - 09.12.2013 KW - Ultrasound KW - Concrete KW - Monitoring system KW - Ultrasonic network KW - Embedded sensor PY - 2013 SN - 978-962-367-768-4 SP - 1 EP - 6 AN - OPUS4-29642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Algernon, Daniel A1 - Streicher, Doreen A1 - Wiggenhauser, Herbert T1 - Bridge Inspection and Condition Assessment in Europe JF - Transportation research record N2 - The European infrastructure asset has developed historically and is characterized by nation-specific construction processes. Inspection, condition assessment, and maintenance procedures differ from country to country. Because of historical and political circumstances, national infrastructure assets are maintained at different levels, too. Since the budget for maintaining the bridge infrastructure less and less meets the demands of a growing bridge stock, bridge inspection, maintenance, and life-cycle considerations gain higher importance. The need exists to develop effective diagnosis tools for early detection of construction faults, defects, and deterioration processes during inspection, to keep the bridge infrastructure at an acceptable level, from structural safety and economic viewpoints. An overview on the latest research projects and integrated bridge management systems in Europe is given. The potentials of nondestructive testing (NDT) are presented, with special focus on technical advances of NDT applications to reinforced concrete (RC) and posttensioned concrete bridges. Although NDT is not regularly integrated in these processes, the application brings valuable information on the current condition of the inner structure in called-in special inspections. NDT-automation and the application of imaging echo methods, combined with advanced data processing, produce a surprising level of information about the inner structure of massive RC slabs up to a depth of about 60 cm. Detected inhomogeneity and scatterers of acoustic or electromagnetic waves can be visualized in vertical or horizontal slices through the structure or animations. The fusion of different three-dimensional data sets of processed data improves the interpretability and accuracy of the results. KW - Category IIIC PY - 2008 DO - https://doi.org/10.3141/2044-04 SN - 0361-1981 VL - 2044 SP - 31 EP - 38 PB - National Research Council CY - Washington, DC AN - OPUS4-18037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - Toolbox with Nondestructive Testing Methods for Condition Assessment of Railway Bridges JF - Transportation research record KW - Non-destructive testing KW - Automated scanning KW - Condition assessment KW - Bridge assessment KW - Ultrasonicecho KW - Impulse radar KW - Impact echo PY - 2006 SN - 0361-1981 IS - 1943 SP - 65 EP - 73 PB - National Research Council CY - Washington, DC AN - OPUS4-14293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -