TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - Toolbox with Nondestructive Testing Methods for Condition Assessment of Railway Bridges KW - Non-destructive testing KW - Automated scanning KW - Condition assessment KW - Bridge assessment KW - Ultrasonicecho KW - Impulse radar KW - Impact echo PY - 2006 SN - 0361-1981 IS - 1943 SP - 65 EP - 73 PB - National Research Council CY - Washington, DC AN - OPUS4-14293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Trela, Christiane A1 - Bien, J. A1 - Kaminski, T. A1 - Bernardini, G. T1 - Multi-tool inspection and numerical analysis of an old masonry arch bridge N2 - Complex special inspection of an old masonry arch bridge according to the Guideline on Inspection and Condition Assessment of Railway Bridges and numerical analysis of the structure are presented. The guideline summarises recommendations for the step-by-step investigation of railway bridges applying enhanced methods developed during the EU-funded project Sustainable Bridges. For the investigation of the arch barrel, the ballast parameters and the inner structure of the backfill behind the arch barrel a number of various advanced non-destructive and minor-destructive testing methods were applied. Deformation of the structure during load tests was measured using three independent measuring systems: laser vibrometer, LVDT and microwave radar. Results of calculations performed with 2D and 3D models based on FEM are compared with the field load tests. Sensitivity of the ultimate load of the structure to investigated parameters is studied in FE model. Some general conclusions according to methods of testing and modelling of masonry arch bridges are presented and discussed. KW - Masonry bridges KW - Non-destructive testing KW - Bridge inspection KW - Finite element method PY - 2010 DO - https://doi.org/10.1080/15732471003645666 SN - 1573-2479 SN - 1744-8980 IS - NSIE_A_465075 SP - 1 EP - 13 PB - Taylor & Francis CY - London AN - OPUS4-22838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Helmerich, Rosemarie A1 - Niederleithinger, Ernst A1 - Trela, Christiane A1 - Bien, J. A1 - Kaminski, T. A1 - BernardiniĀ“, G. T1 - Multi-tool inspection and numerical of an old masonry arch bridge N2 - Complex special inspection of an old masonry arch bridge according to the Guideline on Inspection and Condition Assessment of Railway Bridges and numerical analysis of the structure are presented. The guideline summarises recommendations for the step-by-step investigation of railway bridges applying enhanced methods developed during the EU-funded project Sustainable Bridges. For the investigation of the arch barrel, the ballast parameters and the inner structure of the backfill behind the arch barrel a number of various advanced non-destructive and minor-destructive testing methods were applied. Deformation of the structure during load tests was measured using three independent measuring systems: laser vibrometer, LVDT and microwave radar. Results of calculations performed with 2D and 3D models based on FEM are compared with the field load tests. Sensitivity of the ultimate load of the structure to investigated parameters is studied in FE model. Some general conclusions according to methods of testing and modelling of masonry arch bridges are presented and discussed. KW - Masonry bridges KW - Non-destructive testing KW - Bridge inspection KW - Finite element method PY - 2012 SN - 1573-2479 VL - 8 IS - 1 SP - 27 EP - 39 PB - Taylor & Francis CY - London [u.a.] AN - OPUS4-27425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Wiggenhauser, Herbert A1 - Helmerich, Rosemarie A1 - Krause, Martin A1 - Mielentz, Frank A1 - Niederleithinger, Ernst A1 - Taffe, Alexander A1 - Wilsch, Gerd ED - Naus, D. T1 - Non-destructive Testing of Nuclear Power Plant Concrete Structures State of the Art Report N2 - Nuclear Power Plants have been in operation for ca. 50 years. Based on this experience, non-destructive testing tasks specific to thick and highly reinforced nuclear containment structures have materialized. The performance based Service life extension of existing NPPs also needs a measurement based decision to support continuing the service of the concrete part of the installations. By nature, concrete is a very durable material and any natural Deterioration processes may take a long time to become critical to the structure. The experience of more than 50 years of service limits the testing tasks to a few ones which are not yet solved. Research in NDT of concrete structures is performed by many research institutions all over the world with different technical and systematic approaches. Results are mainly obtained on laboratory specimens, sometimes additional field studies are reported. This research takes place independently without coordination and as a result, the outcomes mostly lack full comparability. Software for data analysis has become indispensable and very powerful. This part of testing needs more attention when it comes to evaluate test results. Validation of NDE solutions is becoming a critical part in concrete structure testing. Validation is by definition the proof that a customerĀ“s requirements in the test are being met by the testing solution. This includes equipment, personnel qualification and data analysis. In the following tables, the research recommendation Validation is used in the sense, that proof of the performance of existing solutions needs to be adressed. In general, a validation methodology for NDE solutions for concrete testing in itself needs to be researched and established. Comparability of research also needs an accepted and easily accessible reference. From experience, it is almost impossible to manufacture exact copies of test specimens at different locations. Round Robin tests are therefore needed to evaluate the performance of a test. Data evaluation is generally done using dedicated software, sometimes Hardware dependant and not interchangeable between systems. Software is ever more increasingly becoming more powerful and sophisticated. An in-depth evaluation needs to address the comparability and validation of Software used for data analysis and evaluation. The vision of a unified software pool for NDE investigations would undoubtedly support research tremendously. Quantitative NDE is mostly recommended to assess the condition of a structure. However, qualitative data can be very useful, especially for processes which change the material properties or deteriorate the structure (e.g. corrosion of reinforcement). The need for reliable baseline data is a key factor for such monitoring tasks. KW - Nuclear structures KW - Non-destructive testing KW - State of the art KW - Research needs PY - 2013 SP - 1 EP - 120 PB - BAM CY - Berlin AN - OPUS4-51049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -