TY - CONF A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.Ö. T1 - An ultrasound monitoring system for concrete structures N2 - The research project "Ultrasonic Net for Concrete Monitoring (UNeCOM)" aims at developing a methodology for an embedded ultrasonic network for the condition assessment of infrastructure constructions. Civil engineering structures made of concrete, which are located in tectonically active regions or undergo special loading conditions, may require continuous monitoring. It is important to assess the condition of the building and its stability to recognise and classify the effect of a seismic event or evolving damage at early stages before failure occurs. Embedded ultrasonic sensors offer the possibility to detect changes in the material and degradation mechanisms from inside the structure in areas which are difficult or impossible to inspect otherwise. In contrast to conventional ultrasonic testing methods, where the concrete surfaces are scanned with ultrasound probes, this new approach uses sensors, which are embedded into concrete, eliminating the effect of variable coupling conditions between sensors and concrete. This method allows an integral detection of changes in the concrete structure, for example due to seismic activities, to detect mechanical impacts, as well as degradation of the material due to overloading. Such methods have great relevance especially for the monitoring of constructions like power plants, bridges, offshore structures and other structures with high technical safety requirements. The sensor network can be controlled remotely through the internet which is also being used for data transfer. The embedded sensor network is designed to monitor structural damage and concrete degradation globally with high sensitivity. T2 - Istanbul bridge conference 2014 CY - Istanbul, Turkey DA - 11.08.2014 KW - Ultrasound KW - Concrete KW - Monitoring PY - 2014 SN - 978-605-64131-6-2 SP - Paper 32, 1 EP - 9 AN - OPUS4-32028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helmerich, Rosemarie A1 - Milmann, Boris A1 - Wöstmann, Jens T1 - Bond durability of CFRP-laminates on concrete bridges N2 - Trans-European corridors for transport of people and goods require strengthening of bridges to carry increased axle loads in terms of absolute axle loads and of their frequency. Most of the bridges along highways are reinforced or prestressed concrete bridges. Since the late 1990s, CFRP laminates have been applied to box girder and T-beam bridges to increase the overall capacity. Although regular inspections are carried out, no special method was available to test the bond condition of CFRP laminates after being in Service for more than ten years. The German Center of Competence in Civil Engineering is aware of this need and funded a research project to investigate the bond condition by means of advanced non-destructive testing (NDT). T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 KW - Concrete bridges KW - Strengthening KW - Non-destructive testing KW - CFRP KW - Durability KW - Inspection PY - 2014 SN - 978-3-00-046740-0 SP - 1 EP - 2 AN - OPUS4-33116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -