TY - CONF A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.Ö. T1 - An ultrasound monitoring system for concrete structures N2 - The research project "Ultrasonic Net for Concrete Monitoring (UNeCOM)" aims at developing a methodology for an embedded ultrasonic network for the condition assessment of infrastructure constructions. Civil engineering structures made of concrete, which are located in tectonically active regions or undergo special loading conditions, may require continuous monitoring. It is important to assess the condition of the building and its stability to recognise and classify the effect of a seismic event or evolving damage at early stages before failure occurs. Embedded ultrasonic sensors offer the possibility to detect changes in the material and degradation mechanisms from inside the structure in areas which are difficult or impossible to inspect otherwise. In contrast to conventional ultrasonic testing methods, where the concrete surfaces are scanned with ultrasound probes, this new approach uses sensors, which are embedded into concrete, eliminating the effect of variable coupling conditions between sensors and concrete. This method allows an integral detection of changes in the concrete structure, for example due to seismic activities, to detect mechanical impacts, as well as degradation of the material due to overloading. Such methods have great relevance especially for the monitoring of constructions like power plants, bridges, offshore structures and other structures with high technical safety requirements. The sensor network can be controlled remotely through the internet which is also being used for data transfer. The embedded sensor network is designed to monitor structural damage and concrete degradation globally with high sensitivity. T2 - Istanbul bridge conference 2014 CY - Istanbul, Turkey DA - 11.08.2014 KW - Ultrasound KW - Concrete KW - Monitoring PY - 2014 SN - 978-605-64131-6-2 SP - Paper 32, 1 EP - 9 AN - OPUS4-32028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kohlhoff, Harald A1 - Helmerich, Rosemarie A1 - Daum, Werner ED - Aulova, Alexandra ED - Rogelj Ritonja, A. ED - Emri, I. T1 - Long-Term measurement of vertical displacements at the outer concrete bridges of the Berlin Main Station N2 - Berlin Main Station is the largest multi-level station in Europe. Its daily passenger number amounts to over 300.000. Structures built for such a large number of people require a high-level safety standard. The station was built on the inner city site of the historic Lehrter Bahnhof. The conditions for building and start of operation were challenging by several reasons. The typical sandy ground with a high level of groundwater makes the permanent static stability of such a complex structure difficult. Several completed, ongoing, and planned construction activities in the immediate vicinity of the station influence the ground settlement of the whole area. On basis of the structural design an impact prediction was calculated, which expected certain vertical displacements particularly between the single columns of the outer concrete bridges of the building. These columns support the glass roof construction, which only allows a defined limit of displacement. In order to avoid damage, a concept for monitoring and adjusting potentially occurring displacements was developed for installation at the outer bridges of the station. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Berlin Main Station KW - Differential displacements KW - Hydraulic levelling system KW - Laser-based displacement measuring system KW - Monitoring KW - Strain measurements PY - 2016 SN - 978-961-94081-0-0 SP - 166 EP - 167 CY - Ljubljana AN - OPUS4-37646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -