TY - CONF A1 - Helmerich, Rosemarie A1 - Moldenhauer, Laura A1 - Voigt, Gerrit A1 - Köppe, E. T1 - Considerations for identification of moisture in building materials using Bluetooth (R) N2 - The vulnerability of low-quality concrete of some bridges to ageing and deterioration while they are exposed to environmental conditions during their service life, influence of growing population and climate changes, is a well-known effect and requires survey. For survey, the development of a low cost, cost-efficient sensor network to be embedded for continuous or attached to the surface for periodic monitoring is essential. Changing ground water conditions, flood or even leakage in fresh or disposal of waste water can lead to in-creased moisture content in building materials and structural elements as walls or floors. Moisture allows the transport of other adverse chemicals that might reduce the durability of structures. The paper presents a feasibility study about the capability of microwave modules as bluetooth® or ZigBee with frequency range at 2,4 GHz to create advanced Wireless Sensor Networks (WSN) for estimation and visualization of moisture distribution in infrastructure assets. It was found that the value of the received signal strength indication (RSSI) depends on the moisture content and can be the basis for the moisture distribution inside a massive structure. The microwave modules may be used to compose networks outside and inside of building materials or structural elements. The higher the number of connections between BLE modules, the more precise and the more distant information can be obtained from the network. Mesh networking was applied to increase the quantitative information. T2 - 9th International Conference on Bridge Maintenance, Safety and Management (IABMAS) CY - Melbourne, Australia DA - 09.07.2018 KW - Structural Health Monitoring KW - Moisture KW - Bluetooth PY - 2018 SN - 978-1-315-18939-0 SN - 978-1-138-73045-8 SP - 2752 EP - 2759 AN - OPUS4-50340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Hille, Falk A1 - Helmerich, Rosemarie A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - E-modulus KW - Impact KW - UHPC KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength PY - 2018 UR - https://www.das2018.ro/ SN - 978-606-23-0874-2 SP - 11 EP - 12 PB - Editura Printech CY - Bucarest, Romania AN - OPUS4-47001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -