TY - JOUR A1 - Otto, S. A1 - Grabolle, Markus A1 - Förster, C. A1 - Kreitner, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - [Cr(ddpd)2]3+: A molecular, water-soluble, highly NIR-emissive ruby analogue N2 - Bright, long-lived emission from first-row transition-metal complexes is very challenging to achieve. Herein, we present a new strategy relying on the rational tuning of energy levels. With the aid of the large N-Cr-N bite angle of the tridentate ligand ddpd (N,N′-dimethyl-N,N′-dipyridine-2-ylpyridine-2,6-diamine) and its strong σ-donating capabilities, a very large ligand-field splitting could be introduced in the chromium(III) complex [Cr(ddpd)2]3+, that shifts the deactivating and photoreactive 4T2 state well above the emitting 2E state. Prevention of back-intersystem crossing from the 2E to the 4T2 state enables exceptionally high near-infrared phosphorescence quantum yields and lifetimes for this 3d metal complex. The complex [Cr(ddpd)2](BF4)3 is highly water-soluble and very stable towards thermal and photo-induced substitution reactions and can be used for fluorescence intensity- and lifetime-based oxygen sensing in the NIR. KW - Chromium complexes KW - Intersystem crossing KW - Ligand-field splitting KW - NIR luminescence KW - Photophysics PY - 2015 DO - https://doi.org/10.1002/anie.201504894 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 54 IS - 39 SP - 11572 EP - 11576 PB - Wiley-VCH CY - Weinheim AN - OPUS4-35084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otto, S. A1 - Förster, C. A1 - Wang, Cui A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - A Strongly Luminescent Chromium(III) ComplexAcid N2 - The synthesis, structure, reactivity,and photophysical properties of anovel acidic,luminescentchromium(III) complex [Cr(H2tpda)2]3+ (23+ +)bearing the tridentate H2tpda (2,6-bis(2-pyridylamino)pyridine) ligand are presented. Excitation of 23+ + at 442 nm results in strong, long-lived NIR luminescence at 782 nm in water and in acetonitrile. X-ray diffraction analysis and IR spectroscopy revealhydrogen-bonding interactions of the counter ions to the NH groups of 23+ + in the solidstate. Deprotonation of the NH groups of 23+ + by using anon-nucleophilic Schwesinger base in CH3CN switches off the luminescence. Re-protonation by using HClO4 restores the emission. In water,the pKa value of 23+ + amountsto8 .8, yet deprotonation is not reversible in the presence of hydroxide ions. Dioxygen quenches the emission of 23+ +,but to aweaker extent than expected. This is possibly due to the strong ion-pairing properties of 23+ + even in solution, reducing the energy transfer efficiency to O2.Deuteration of the NH groups of 23+ + approximately doubles the quantum yield and lifetime in water,demonstrating the importance of multiphoton relaxation in these NIR emitters. KW - Cr(III) complex KW - Oxygen sensor KW - pH sensor KW - Luminescence KW - Luminescence lifetime KW - Quantum yield KW - NIR emitter PY - 2018 DO - https://doi.org/10.1002/chem.201802797 SN - 0947-6539 VL - 24 IS - 48 SP - 12555 EP - 12563 PB - Wiley‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siebler, Daniel A1 - Heinze, K. T1 - Conformational stability of oligoferrocene oligoamide foldamers N2 - Organometallic oligoamides built from three to four ferrocene amino acid units (H-Fca-OH,1-amino-1'-ferrocene carboxylic acid) fold into hydrogen bonded secondary structures featuring eight-membered rings by cooperative hydrogen bonds. NMR studies and DFT calculations (CAM-B3LYP, LANL2DZ, IEFPCM (THF) reveal that the organometallic zigzag foldamer structures are highly resistant toward denaturation by hydrogen bond acceptors such as dimethyl sulfoxide and 2,4-lutidine. Replacing one ferrocene amino acid unit by the organic alpha-amino acid glycine at the C-terminal end (Fca goes to Gly) significantly destabilizes the secondary zigzag structure facilitating denaturation by DMSO. Highly stabilized ordered poly(Fca) architectures are very attractive for future applications of switchable hydrogen-bonded redox-active materials. KW - Secondary structure KW - Conformational analysis KW - Ferrocene KW - Foldamers KW - Hydrogen bonds PY - 2016 DO - https://doi.org/10.1016/j.organchem.2016.02.032 SN - 0022-328X VL - 821 SP - 19 EP - 24 PB - Elsevier B.V. AN - OPUS4-37961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kreitner, C. A1 - Grabolle, Markus A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Dual emission and excited-state mixed-valence in a quasi-symmetric dinuclear Ru-Ru complex N2 - The synthesis and characterization of the new dinuclear dipeptide [(EtOOC-tpy)Ru(tpy-NHCO-tpy)Ru(tpy-NHCOCH3)]4+ 34+ of the bis(terpyridine)ruthenium amino acid [(HOOC-tpy)Ru(tpy-NH2)]2+ 12+ are described, and the properties of the dipeptide are compared to those of the mononuclear complex [(EtOOC-tpy)Ru(tpy-NHCOCH3)]2+ 42+ carrying the same functional groups. 34+ is designed to serve a high electronic similarity of the two ruthenium sites despite the intrinsic asymmetry arising from the amide bridge. This is confirmed via UV–vis absorption and NMR spectroscopy as well as cyclic voltammetry. 42+ and 34+ are emissive at room temperature, as expected. Moreover, 34+ exhibits dual emission from two different triplet states with different energies and lifetimes at room temperature. This is ascribed to the presence of a unique thermal equilibrium between coexisting [RuII(tpy-NHCO-tpy·–)RuIII] and [RuIII(tpy-NHCO-tpy·–)RuII] states leading to an unprecedented excited-state RuIIRuIII mixed-valent system via the radical anion bridge tpy-NHCO-tpy·–. The mixed-valent cation 35+, on the other hand, shows no measurable interaction of the RuIIRuIII centers via the neutral bridge tpy-NHCO-tpy (Robin–Day class I). Reduction of 34+ to the radical cation 33+ by decamethylcobaltocene is bridge-centered as evidenced by rapid-freeze electron paramagnetic resonance spectroscopy. Interestingly, all attempts to observe 33+ via NMR and UV–vis absorption spectroscopy only led to the detection of the diamagnetic complex 3-H3+ in which the bridging amide is deprotonated. Hence 3-H3+ (and 4-H+) appear to reduce protons to dihydrogen. The ease of single and double deprotonation of 42+ and 34+ to 4-H+, 3-H3+, and 3-2H2+ was demonstrated using a strong base and was studied using NMR and UV–vis absorption spectroscopies. The equilibrating excited triplet states of 34+ are reductively quenched by N,N-dimethylaniline assisted by hydrogen bonding to the bridging amide. KW - Dual emission KW - Excited state mixed-valence KW - Electron transfer KW - Ruthenium KW - Terpyridine KW - Amide acidity PY - 2014 DO - https://doi.org/10.1021/ic5020362 SN - 0020-1669 SN - 1520-510X VL - 53 IS - 24 SP - 12947 EP - 12961 PB - American Chemical Society CY - Washington, DC AN - OPUS4-32536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moll, J. A1 - Wang, Cui A1 - Päpcke, A. A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Lochbrunner, S. A1 - Heinze, K. T1 - Green Light Activation of Push-Pull Ruthenium(II) Complexes N2 - Synthesis, characterization, electrochemistry, and photophysics of novel homo- and heteroleptic ruthenium(II) complexes [Ru(cpmp)2] 2+ (22+) and [Ru(cpmp)(ddpd)]2+ (32+) bearing the tridentate ligands 6,2’’-carboxypyridyl-2,2’-methylamine-pyridylpyridine (cpmp) and N,N’-dimethyl-N,N’-dipyridin-2-ylpyridine-2,6-diamine (ddpd) are reported. The complexes possess one (32+) or two (22+) electron-deficient dipyridyl ketone fragments as electron accepting sites enabling intraligand charge transfer (ILCT), ligand-toligand charge transfer (LL’CT) and low-energy metal-to-ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). 22+ shows 3MLCT phosphorescence in the red to near-infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a 3MLCT lifetime of 477 ns, while 3 2+ is much less luminescent. This different behaviour is ascribed to the energy gap law and the shape of the parasitic excited 3MC state potential energy surface. This study highlights the importance of the excited state energies and geometries for the actual excited state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 22+ paving the way to photocatalytic applications using low-energy green light as exemplified with the green-light sensitized thiol-ene click reaction. KW - Green light excitation KW - Ruthenium(II) complexes KW - Phosphorescence KW - MLCT KW - Photoinduced electron transfer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506759 DO - https://doi.org/10.1002/chem.202000871 SP - 1 EP - 13 PB - Wiley-VCH Verlag AN - OPUS4-50675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treiling, S. A1 - Wang, Cui A1 - Förster, C. A1 - Reichenauer, F. A1 - Kalmbach, J. A1 - Boden, P. A1 - Harris, J. P. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Resch-Genger, Ute A1 - Reber, C. A1 - Seitz, M. A1 - Gerhards, M. A1 - Heinze, K. T1 - Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex N2 - Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n‐butyl)amine). KW - Quantum yield KW - Cr(III) complex KW - Longst luminescence lifetime KW - Electron transfer PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494870 DO - https://doi.org/10.1002/anie.201909325 VL - 58 SP - 2 EP - 13 PB - Wiley-VCH AN - OPUS4-49487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Otto, S. A1 - Dorn, M. A1 - Heinze, K. A1 - Resch-Genger, Ute T1 - Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength N2 - Two nanosensors for simultaneous optical measurements of the bioanalytically and biologically relevant analytes temperature (“T”), oxygen (“O”), and pH (“P”) have been designed. These “TOP” nanosensors are based on 100 nmsized silica-coated polystyrene nanoparticles (PS-NPs) doped with a near-infrared emissive oxygen- and temperature-sensitive chromium(III) complex ([Cr(ddpd)2][BPh4]3, CrBPh4) and an inert reference dye (Nile Red, NR or 5,10,15,20tetrakis(pentafluorophenyl) porphyrin, TFPP) and are covalently labeled with pHsensitive fluorescein isothiocyanate (FITC). These emitters can be excited at the same wavelength and reveal spectrally distinguishable emission bands, allowing for ratiometric intensity-based and time-resolved studies in the visible and near-infrared wavelength region. Studies in PBS buffer solutions and in a model body liquid demonstrate the applicability of these nanosensors for the sensitive luminescence readout of TOP simultaneously at the same spatialposition. KW - Medical diagnostics KW - Sensor KW - Nanoparticle KW - Fluorescence KW - Nanosensor KW - Oxygen KW - Temperature KW - pH KW - Ratiometric KW - Lifetime KW - NIR KW - Cr(III) complex KW - Dye KW - FITC KW - Environment PY - 2019 DO - https://doi.org/10.1021/acs.analchem.8b05060 SN - 0003-2700 VL - 91 IS - 3 SP - 2337 EP - 2344 PB - ACS AN - OPUS4-47455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalmbach, J. A1 - Wang, Cui A1 - You, Yi A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Resch-Genger, Ute A1 - Seitz, M. T1 - Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts N2 - Upconversion photoluminescence in hetero-oligonuclear metal complex architectures featuring organic ligands is an interesting but still rarely observed phenomenon, despite its great potential from a basic research and application perspective. In this context, a new photonic material consisting of molecular chromium(III) and ytterbium(III) complex Ions was developed that exhibits excitation-power density-dependent cooperative sensitization of the chromium-centered 2E/2T1 phosphorescence at approximately 775 nm after excitation of the ytterbium band 2F7/2!2F5/2 at approximately 980 nm in the solid state at ambient temperature. The upconversion process is insensitive to atmospheric oxygen and can be observed in the presence of water molecules in the crystal lattice. KW - Upconversion KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - Cr(III) KW - Yb(III) complex KW - Crystal KW - Triplet-triplet annihilation KW - Sensitization KW - Light harvesting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512619 DO - https://doi.org/10.1002/anie.202007200 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 42 SP - 18804 EP - 18808 PB - Wiley CY - Weinheim AN - OPUS4-51261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichenauer, F. A1 - Wang, Cui A1 - Förster, C. A1 - Boden, P. A1 - Ugur, N. A1 - Báez-Cruz, R. A1 - Kalmbach, J. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Ramanan, C. A1 - Niedner-Schatteburg, G. A1 - Gerhards, M. A1 - Seitz, M. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+ N2 - Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge Transfer states described by spatially separated orbitals, the energies of spinflip states cannot straightforwardly be predicted as Pauli Repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl) pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand’s methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and Ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues. KW - Fluorescence KW - Optical probe KW - Sensor KW - PH KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530548 DO - https://doi.org/10.1021/jacs.1c05971 VL - 143 IS - 30 SP - 11843 EP - 11855 PB - ACS Publications AN - OPUS4-53054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, J. A1 - Wünsche von Leupoldt, A. A1 - Grabolle, Markus A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Thermal and photoinduced electron transfer in directional bis(terpyridine)ruthenium(II)-(bipyridine)-platinum(II) complexes N2 - Metalloligands L1 and L2 consisting of directional bis(terpyridine)ruthenium(II) units and bipyridine moieties were constructed by amide formation. From these metalloligands two Ru–Pt heterobimetallic complexes 1 and 2 were derived by a building-block method by means of platination with [PtCl2(dmso)2]. Both bimetallic complexes 1 and 2 feature metal-to-ligand charge transfer (MLCT) absorptions, and emission occurs at room temperature in fluid solution from ³MLCT(Ru) states in all cases. Energy transfer from platinum to ruthenium is observed in 2 but not in 1 (light harvesting). The one-electron-reduced species [1]– and [2]– were prepared by reduction of 1 and 2 with decamethylcobaltocene. EPR spectra and DFT calculations reveal that the spin density is localized at the tpy–CO/Ru (tpy = terpyridine) site in [1]–, whereas it is centered at bpy–CO/Pt (bpy = 2,2'-bipyridine) in [2]–. Efficient photoinduced electron transfer from triethanolamine to 1 and 2 is feasible by excitation at 500 nm [MLCT(Ru)]. KW - Electron transfer KW - Luminescence KW - Platinum KW - Ruthenium KW - N ligands PY - 2013 DO - https://doi.org/10.1002/ejic.201201531 SN - 1434-1948 SN - 1099-0682 VL - 2013 IS - 17 SP - 3009 EP - 3019 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otto, S. A1 - Moll, J. A1 - Förster, C. A1 - Geißler, Daniel A1 - Wang, Cui A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Three-in-One Crystal: The Coordination Diversity of Zinc Polypyridine Complexes N2 - The syntheses, structures, and photophysical properties of two new zinc(II) complexes bearing the tridentate N,N′-dimethyl-N,N′-dipyridin-2-ylpyridine-2,6-diamine (ddpd) ligand are presented. Structural investigations through single-crystal X-ray diffractometry, NMR spectroscopy, and density functional theory calculations revealed a diverse coordination behavior that depends on the counterion. Spectroscopic (UV/Vis and emission spectroscopy) and theoretical techniques (DFT and time-dependent DFT calculations) were employed to explore the photophysical properties of the complexes. KW - Zinc(II) complexes KW - X-ray diffractometry (XRD) KW - NMR spectroscopy KW - Density functional theory (DFT) KW - UV/Vis and emission spectroscopy PY - 2017 DO - https://doi.org/10.1002/ejic.201700948 SN - 1434-1948 SN - 1099-0682 VL - 43 SP - 5033 EP - 5040 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-43274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gharaati, S. A1 - Wang, Cui A1 - Förster, C. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Triplet–Triplet Annihilation Upconversion in a MOF with AcceptorFilled Channels N2 - In summary, we report a highly modular solid TTA-UC system comprising of a crystalline, thermally stable PCN222(Pd) MOF with CA-coated MOF channels and with a DPA annihilator embedded in a solution-like environment in the MOF channels. This solid material displays blue upconverted delayed emission with a luminescence lifetime of 373 us, a threshold value of 329 mW*cm-2 and a triplet–triplet energy transfer efficiency of 82%. This optical application adds another facet to the versatile chemistry of PCN-222 MOFs. The design concept is also applicable to other TTA-UC pairs and enables tuning of the UCL color, for example, by replacing DPA with other dyes as exemplarily shown for 2,5,8,11-tetra-tert-butyl-perylene, that yields UCL at 450 nm. Current work aims to reduce the oxygen sensitivity and to increase the retention of the trapped annihilators in organic environments, for example, by tuning the chain length of the carboxylic acid and by coating the MOF surface. In addition, the TTA-UC efficiency will be further enhanced by reducing the reabsorption of the UC emission caused by Pd(TCPP) and by optimizing the sensitizer/annihilator interface. KW - Porphyrin KW - Method KW - MOF KW - Fluorescence KW - Dye KW - Sensor KW - Oxygen sensitive KW - Single molecule KW - DPA KW - Lifetime KW - Upconverstion KW - Quantum yield KW - Triplet-triplet annihilation KW - Sensitization KW - Energy transfer KW - NMR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500580 DO - https://doi.org/10.1002/chem.201904945 VL - 26 IS - 5 SP - 1003 EP - 1007 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -