TY - JOUR A1 - Zocca, Andrea A1 - Colombo, P. A1 - Günster, Jens A1 - Mühler, T. A1 - Heinrich, J.G. T1 - Selective laser densification of lithium aluminosilicate glass ceramic tapes N2 - Tapes, cast by blade deposition of a lithium aluminosilicate glass slurry, were sintered using a YAG-fiber laser, with the aim of finding suitable parameters for an additive manufacturing process based on layer-wise slurry deposition and selective laser densification. The influence of the laser parameters (output power and scan velocity) on the sintering was evaluated, by scanning electron microscopy and by X-ray diffraction, on the basis of the quality of the processed layer. Well densified samples could be obtained only in a small window of values for the output power and the scan velocity. The measurement of the width of a set of single scanned lines allowed also to estimate the minimum resolution of the system along the layer plane. KW - Selective laser sintering (SLS) KW - Laserwise-slurry-deposition (LSD) KW - Glass-ceramic KW - LAS PY - 2013 UR - http://ac.els-cdn.com/S0169433212020168/1-s2.0-S0169433212020168-main.pdf?_tid=4ba0c92c-31d4-11e4-84f1-00000aab0f02&acdnat=1409575040_15d5256291262aca99cc5321374ab879 DO - https://doi.org/10.1016/j.apsusc.2012.11.058 SN - 0169-4332 SN - 1873-5584 VL - 265 SP - 610 EP - 614 PB - North-Holland CY - Amsterdam AN - OPUS4-31283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oelgardt, C. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Characterization of the crystallization behavior of laser-fused transparent microspheres with the eutectic composition Al2O3-Y2O3-ZrO2 (AYZ) N2 - Transparent microspheres with the eutectic composition 65 Al2O3-16 Y2O3-19 ZrO2 (mol%) have been produced by laser fusing with a CO2 laser. The influence of the starting material – not pre-calcined and pre-calcined – as well as the laser power on the resulting microspheres – was investigated. After fabrication, the microspheres were analyzed by means of XRD to quantify the amorphous content of the spheres as well as to identify the residual crystalline phases, with a laser granulometer to measure the particle sizes of the starting material and the resulting microspheres, with DSC to characterize the glass transition temperature and crystallization behavior, and with SEM to investigate the microstructure of the microspheres. The laser-treated materials consist of transparent and opaque beads as well as sintered particles. The amorphous amount in the samples was detected to be ~ 85 %. Based on these results transparent beads were collected and annealed over a range of temperatures to analyze the crystallization behavior. KW - Eutectic ceramics KW - Al2O3-Y2O3-ZrO2 KW - Laser processing KW - Crystallization behavior KW - Microstructure PY - 2011 DO - https://doi.org/10.4416/JCST2011-00010 SN - 2190-9385 VL - 02 IS - 02 SP - 103 EP - 110 PB - Göller CY - Baden-Baden AN - OPUS4-23763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Zeng, Y.-P. A1 - Jiang, D. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Gradient porous silicon nitride prepared via vacuum foaming and freeze drying N2 - Gradient porous silicon nitride (Si3N4) was fabricated by a novel vacuum foaming and freeze drying process. Aqueous Si3N4 slurries were foamed at vacuum pressure of 50–90 kPa, the green body was obtained by the freeze drying process, a gradient pore structure with porosities of 72–90% was achieved after pressureless sintering at 1680 °C. The porosity was increased with decreasing vacuum pressure. The pore structure consists of large pores (~100 μm) on top, medium pores (~45 μm) on the wall of the large pores, and small pores (~0.7 μm) in the matrix. Such gradient porous Si3N4 with macro- and micro-pores has potential application as high temperature filters. KW - Silicon nitride KW - Graded PY - 2015 DO - https://doi.org/10.1016/j.matlet.2014.11.067 SN - 0167-577x SN - 1873-4979 VL - 141 SP - 138 EP - 140 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühler, T. A1 - Heinrich, J. A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Slurry-based additive manufacturing of ceramics N2 - Most additive manufacturing (AM) techniques have in common that material is spread out as thin layers of a dried powder/granulate by a roller or a shaker system. These layers are mostly characterized by a low packing rate. On the other hand, appreciable densities can be reached by the use of ceramic slurries. In this context, the layer-wise slurry deposition (LSD) has been developed. Specific features of the LSD process are reflected on the basis of already existing additive manufacturing technologies. The microstructure of laser-sintered bodies will be discussed, and strategies for an improved microstructure during sintering will be introduced. KW - Additive manufacturing KW - Ceramic KW - Selective laser sintering PY - 2015 DO - https://doi.org/10.1111/ijac.12113 SN - 1546-542X SN - 1744-7402 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 12 IS - 1 SP - 18 EP - 25 PB - American Ceramic Soc. CY - Westerville, Ohio AN - OPUS4-29937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -