TY - JOUR A1 - Mühler, T. A1 - Wirth, Cynthia A1 - Ascheri, Mary A1 - Nicolaides, Dagmar A1 - Heinrich, J. A1 - Günster, Jens T1 - Slurry-based powder beds for the selective laser sintering of silicate ceramics N2 - Selective laser sintering of ceramic powders is a promising technique for the additive manufacturing of complex- and delicate-shaped ceramic parts. Most techniques have in common that the powder to be sintered is spread to a thin layer as a dry powder by means of a roller or shaker system. These layers have a relatively low density. On the other hand, appreciable densities can be reached with the use of ceramic slurries as the starting material. Therefore, the layer-wise slurry deposition (LSD) process has been developed. Layer stacks, i.e. powder beds, built up by employing the LSD technology exhibit a density comparable to ceramic powder compacts processed by means of conventional forming technologies. Writing the layer information with a focused laser beam in these dense ceramic powder compacts enables the manufacture of ceramic bodies with a high density and precision in contour. KW - Additive Fertigung KW - Keramik PY - 2015 DO - https://doi.org/10.4416/JCST2015-0007 SN - 2190-9385 VL - 6 IS - 2 SP - 113 EP - 118 PB - Göller CY - Baden-Baden AN - OPUS4-34962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühler, T. A1 - Helsch, G. A1 - Heinrich, J.G. A1 - Yao, Dongxu A1 - Gräf, S. A1 - Müller, F.A. A1 - Günster, Jens T1 - Strategies for the selective volume sintering of ceramics N2 - The present study is dealing with the basic physics for a novel way to generate a free-formed ceramic body, not like common layer by layer, but directly by Selective Volume Sintering (SVS) in a compact block of ceramic powder. To penetrate with laser light into the volume of a ceramic powder compact it is necessary to investigate the light scattering properties of ceramic powders. Compared with polymers and metals, ceramic materials are unique as they offer a wide optical window of transparency. The optical window typically ranges from below 0.3 up to 5 µm wave length. In the present study thin layers of quartz glass (SiO2) particles have been prepared. As a function of layer thickness and the particle size, transmission and reflection spectra in a wave length range between 0.5 and 2.5 µm have been recorded. Depending on the respective particle size and by choosing a proper relation between particle size and wave length of the incident laser radiation, it is found that light can penetrate a powder compact up to a depth of a few millimeters. With an adjustment of the light absorption properties of the compact the initiation of sintering in the volume of the compact is possible. KW - Additive Manufacturing PY - 2014 DO - https://doi.org/10.1557/jmr.2014.174 SN - 0884-2914 VL - 29 IS - 17 SP - 2095 EP - 2099 PB - Materials Research Society CY - Warrendale, Pa. AN - OPUS4-32544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Wirth, Cynthia A1 - Zeng, Y.-P. A1 - Jiang, D. A1 - Günster, Jens A1 - Heinrich, J. T1 - Near zero shrinkage porous Al2O3 prepared via 3D-printing and reaction bonding N2 - Porous Al2O3 with high porosity (~45%), remarkable flexural strength (~70 MPa), and low dimensional change (~1–2%), was produced by indirect 3D printing and reaction bonding. Coarse Al with good flowability was carried out printing green body. The green body was heat treated to get fully oxidized, volume expansion during oxidation simultaneously formed strong neck bonding, not only brought good strength, but also restricted shrinkage. Porous Al2O3 with architecture of macro pores designed by 3D printing and micro pores in the strut formed by packing of particles was obtained. The near zero shrinkage can facilitate precise design of product with complex shape. KW - Al2O3 reaction bonding PY - 2015 DO - https://doi.org/10.1016/j.matlet.2015.02.037 SN - 0167-577x SN - 1873-4979 VL - 147 SP - 116 EP - 118 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-34960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens A1 - Heinrich, J. T1 - 2nd International symposium on materials processing science with lasers as energy sources KW - Materials science PY - 2012 SN - 0173-9913 SN - 0196-6219 VL - 89 IS - 6-7 SP - E 36 PB - Göller CY - Baden-Baden AN - OPUS4-31281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, H.-L. A1 - Zeng, Y.-P. A1 - Xia, Y. A1 - Yao, Dongxu A1 - Zuo, K.-H. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Rapid fabrication of porous Si3N4/SiC ceramics via nitridation of silicon powder with ZrO2 as catalyst N2 - Porous Si3N4/SiC ceramics were rapidly prepared with Y2O3 as sintering additive and ZrO2 as nitrided catalyst, using Si and SiC as starting powders. Porous Si3N4/SiC ceramics with 5 wt% ZrO2 addition showed a complete nitridation and good mechanical properties (with a high porosity of 34.96%, flexural strength of 150±4.2 MPa, linear shrinkage of 0.02%). It was revealed that the reciprocal formation of ZrO2 and ZrN effectively enhanced nitridation by inhibiting the melting of silicon in micro-regions. KW - D. ZrO2 KW - Rapid nitridation KW - Si3N4/SiC porous ceramics PY - 2014 DO - https://doi.org/10.1016/j.ceramint.2013.11.098 SN - 0272-8842 SN - 1873-3956 VL - 40 IS - 5 SP - 7579 EP - 7582 PB - Ceramurgia CY - Faenza AN - OPUS4-30295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wirth, Cynthia A1 - Müller, Ralf A1 - Günster, Jens A1 - Mühler, T. A1 - Görke, R. A1 - Heinrich, J.G. T1 - Submicrometer silica spheres generated by laser fuming N2 - The production of agglomerate-free SiO2 particles exhibiting a monomodal distribution of particle sizes of around 300 nm by means of direct laser fuming of micrometric SiO2 powders has been successfully demonstrated. With a 12 kW cw CO2 laser system, a production rate of up to 1 kilogram powder per hour was achieved. Almost ideal spherical amorphous SiO2 particles in a broad particle size distribution between 10 nm and several 100 nm (d50 ≈ 300 nm) were synthesized. Several observations suggest weak agglomeration forces between the particles. A temperature reduction of 200 °C for sintering powder compacts was observed. KW - Laser KW - SiO2 KW - Nanopowder PY - 2013 DO - https://doi.org/10.4416/JCST2012-00033 SN - 2190-9385 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 4 IS - 1 SP - 11 EP - 18 PB - Göller CY - Baden-Baden AN - OPUS4-31423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Jiang, D. A1 - Günster, Jens A1 - Zeng, Y.-P. A1 - Heinrich, J.G. T1 - Porous Si3N4 ceramics prepared via partial nitridation and SHS N2 - Porous Si3N4 ceramics were prepared via partial nitridation and self-propagating high temperature synthesis (SHS) process. Raw Si and additive Y2O3 were mixed and molded under 10 MPa into a compact, the compact was partial nitridation at 1300 °C to form a porous Si/Si3N4, and then it was buried in a Si/Si3N4 bed for SHS to obtain porous Si3N4 with rod-like β-Si3N4 morphology. The processing combined the advantages of the nitridation of Si and SHS with low cost, low shrinkage and time saving. Porous Si3N4 with a porosity of 47%, a strength of 143 MPa were obtained by this method. KW - Si3N4 KW - Strength KW - Porosity PY - 2013 DO - https://doi.org/10.1016/j.jeurceramsoc.2012.08.033 SN - 0955-2219 SN - 1873-619X VL - 33 IS - 2 SP - 371 EP - 374 PB - Elsevier CY - Oxford AN - OPUS4-31282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, H.-L. A1 - Zeng, Y.-P. A1 - Zuo, K.-H. A1 - Xia, Y. A1 - Yao, Dongxu A1 - Günster, Jens A1 - Heinrich, J. A1 - Li, S. T1 - Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon N2 - Porous Si3N4/SiC ceramics were prepared with Si and SiC as raw materials, Y2O3 as sintering additive and ZrO2 as nitrided catalyst through a rapid nitration process. The nitriding rate as a function of temperature and duration was investigated. The porous Si3N4/SiC ceramics with 8 wt% monoclinic ZrO2 addition that was nitrided at 1400 °C for 2 h exhibited the highest nitridation degree of 95%. The experimental results also demonstrated that the reciprocal formation of ZrO2 and ZrN can effectively enhance the level of nitridation by suppressing the melting of silicon in micro-regions. The effects of nitriding time on the mechanical properties of the specimens with ZrO2 as a catalyst was also studied. After nitrided at 1400 °C for various durations from 2 to 8 h, the porous Si3N4/SiC ceramics with the properties of a porosity over 39.8%, a flexural strength over 88.9 MPa and a linear shrinkage lower than 0.6% were achieved. The systematic investigation reveals the catalytic mechanism of ZrO2 in the synthesis of Si3N4/SiC ceramics. KW - Si3N4 PY - 2015 DO - https://doi.org/10.1016/j.jeurceramsoc.2015.06.028 SN - 0955-2219 SN - 1873-619X VL - 35 IS - 14 SP - 3781 EP - 3787 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-34956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. J. A1 - Günster, Jens A1 - Heinrich, J. T1 - Sintering and piezoelectric properties of K0.5Na0.5NbO3 glass microspheres N2 - Laser-fused K0.5Na0.5NbO3 (KNN) powder of 75% transparent fraction has been sintered by pressureless sintering, spark plasma sintering (SPS), and hot isostatic pressing (HIP). The laser-fused KNN has a fictive temperature of 503 °C and an onset crystallization temperature of around 529 °C. The results have shown that sintering of the laser-fused KNN powder utilizing the viscous flow of the transparent microspheres (amorphous content)–at the kinetic window (26 °C)–is possible. The highest yield relative density is around 83% at a sintering temperature of 525 °C and at a sintering pressure of 280 MPa. Limited density has been reached because of formation of crystalline surface layers around the amorphous areas. The samples hipped at 525 °C have low piezoelectric coefficient d33 of 5 pC/N because of the residual porosity that led to early dielectric breakdown during the polarization. The sintering behavior, the resulting microstructure as well as the measured properties will be discussed. KW - KNN KW - Glass microspheres PY - 2015 DO - https://doi.org/10.1016/j.jeurceramsoc.2015.07.035 SN - 0955-2219 SN - 1873-619X VL - 35 IS - 15 SP - 4143 EP - 4151 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-34958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Jiang, D. A1 - Günster, Jens A1 - Zeng, Y.-P. A1 - Heinrich, J.G. T1 - The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics N2 - Porous silicon nitride ceramics were prepared via sintered reaction bonded silicon nitride at 1680 °C. The grain size of nitrided Si3N4 and diameter of post-sintered ß-Si3N4 are controlled by size of raw Si. Porosity of 42.14–46.54% and flexural strength from 141 MPa to 165 MPa were obtained. During post-sintering with nano Y2O3 as sintering additive, nano Y2O3 can promote the formation of small ß-Si3N4 nuclei, but the large amount of ß-Si3N4 (>20%) after nitridation also works as nuclei site for precipitation, in consequence the growth of fine ß-Si3N4 grains is restrained, the length is shortened, and the improvement on flexural strength is minimized. The effect of nano SiC on the refinement of the ß-Si3N4 grains is notable because of the pinning effect, while the effect of nano C on the refinement of the ß-Si3N4 grains is not remarkable due to the carbothermal reaction and increase in viscosity of the liquid phase. KW - Porous ceramics KW - Silicon nitride KW - Reaction bonding KW - Anisotropic grain growth KW - Ceramic PY - 2014 DO - https://doi.org/10.1016/j.jeurceramsoc.2014.06.018 SN - 0955-2219 SN - 1873-619X VL - 34 IS - 15 SP - 3461 EP - 3467 PB - Elsevier CY - Oxford AN - OPUS4-32542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -