TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Heídari, M. A1 - von Klitzing, R. A1 - Schönhals, Andreas T1 - Unveiling the dynamics of self-assembled layers of thin films of poly(vinyl methyl ether) (PVME) by nanosized relaxation spectroscopy N2 - A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of Poly(vinyl methyl ether) (PVME) (thicknesses: 7 nm – 160 nm). For the BDS measurements, a recently designed nano-structured electrode system is employed. A thin film is spin-coated on an ultra-flat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with non-conducting nanostructured SiO2 nano-spacers with heights of 35 nm or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincidences in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films. KW - Broadband dielectric spectroscopy KW - AC-nanochip calorimetry KW - Nanostructured capacitors KW - Thin films PY - 2017 UR - http://pubs.acs.org/doi/pdf/10.1021/acsami.6b14404 U6 - https://doi.org/10.1021/acsami.6b14404 SN - 1944-8244 VL - 9 IS - 8 SP - 7535 EP - 7546 PB - ACS Publications CY - Washington DC AN - OPUS4-39291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Heidari, M. A1 - von Klitzing, R. A1 - Napolitano, S. A1 - Sferrazza, M. A1 - Schönhals, Andreas T1 - Decoupling of dynamic and thermal glass transition in thin films of a PVME/PS blend N2 - The discussions on the nanoconfinement effect on the glass transition and glassy dynamics phenomena have yielded many open questions. Here, the thickness dependence of the thermal glass transition temperature of thin films of a PVME/PS blend is investigated by ellipsometry. Its thickness dependence was compared to that of the dynamic glass transition (measured by specific heat spectroscopy), and the deduced Vogel temperature (T0). While and T0 showed a monotonous increase, with decreasing the film thickness, the dynamic glass transition temperature () measured at a finite frequency showed a non-monotonous dependence that peaks at 30 nm. This was discussed by assuming different cooperativity length scales at these temperatures, which have different sensitivities to composition and thickness. This non-monotonous thickness dependence of disappears for frequencies characteristic for T0. Further analysis of the fragility parameter, showed a change in the glassy dynamics from strong to fragile, with decreasing film thickness. KW - Thin polymeric films KW - Ellipsometry KW - Specific heat spectroscopy PY - 2017 U6 - https://doi.org/10.1021/acsmacrolett.7b00625 SN - 2161-1653 VL - 6 IS - 10 SP - 1156 EP - 1161 PB - ACS Publications AN - OPUS4-42266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -