TY - CONF A1 - Hecht, Mandy A1 - Rurack, Knut T1 - A highly flourescent pH sensing membrane for the alkaline pH T2 - 8. Deutsches BioSensor Symposium CY - Wildau, Germany DA - 2013-03-10 PY - 2013 AN - OPUS4-27847 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hecht, Mandy A1 - Panne, Ulrich A1 - Rurack, Knut T1 - The development of flourescent test strips for ionic analytes by embedding BODIPY-based probes into hydrogel matrices T2 - ANAKON 2013 CY - Essen, Germany DA - 2013-03-04 PY - 2013 AN - OPUS4-27851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Biyikal, Mustafa A1 - Hecht, Mandy A1 - Rurack, Knut T1 - Mimicking tricks from nature with sensory organic-inorganic hybrid materials N2 - Design strategies for (bio)chemical systems that are inspired by nature's accomplishments in system design and operation on various levels of complexity are increasingly gaining in importance. Within the broad field of biomimetic chemistry, this article highlights various attempts toward improved and sophisticated sensory materials that rely on the combination of supramolecular (bio)chemical recognition principles and nanoscopic solid structures. Examples range from more established concepts such as hybrid sensing ensembles with improved sensitivity and selectivity or for target analytes for which selectivity is hard to achieve by conventional methods, which were often inspired by protein binding pockets or ion channels in membranes, to very recent approaches relying on target-gated amplified signalling with functionalised mesoporous inorganic supports and the integration of native biological sensory species such as transmembrane proteins in spherically supported bilayer membranes. Besides obvious mimicry of recognition-based processes, selected approaches toward chemical transduction junctions utilizing artificially organized synapses, hybrid ensembles for improved antibody generation and uniquely colour changing systems are discussed. All of these strategies open up exciting new prospects for the development of sensing concepts and sensory devices at the interface of nanotechnology, smart materials and supramolecular (bio)chemistry. KW - Sensorik KW - Supramolekulare Chemie KW - Biomimetik KW - Nanotechnologie KW - Hybridmaterialien PY - 2011 U6 - https://doi.org/10.1039/c1jm11210d SN - 0959-9428 SN - 1364-5501 VL - 21 IS - 34 SP - 12588 EP - 12604 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-24352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Calero, P. A1 - Hecht, Mandy A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Soto, J. A1 - Vivancos, J.L. A1 - Rurack, Knut T1 - Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA) N2 - In conjunction with quenching metal ions, silica nanoparticles carrying terpyridine coordination sites and sulforhodamine B signalling units were employed for the differential fluorometric recognition of anions. KW - Hybridmaterial KW - Silica-Nanopartikel KW - Fluoreszenz KW - Anionen KW - Verdrängungsassay PY - 2011 U6 - https://doi.org/10.1039/c1cc13039k SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 47 IS - 38 SP - 10599 EP - 10601 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-24489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hecht, Mandy A1 - Kraus, Werner A1 - Rurack, Knut T1 - A highly fluorescent pH sensing membrane for the alkaline pH range incorporating a BODIPY dye N2 - A robust and re-usable dipstick-type fluorescent pH sensor for the alkaline pH range was developed by embedding a brightly fluorescent boron–dipyrromethene (BODIPY) dye bearing an acidic phenol moiety into a polyurethane matrix immobilized on a 3D epoxy-functionalized polymer support. The sensor strip has a dynamic working range of pH 10.0–13.1, i.e., operates in strongly basic media where pH glass electrodes can suffer from alkaline errors, and tolerates a high electrolyte background such as simulated seawater and sewage. This work describes the preparation of the sensing material and provides insight into the features that a hydrogel sensing membrane can bestow on an embedded pH-responsive dye by means of optical spectroscopic investigations. KW - pH-Wert KW - Farbstoffe KW - Fluoreszenz KW - Teststreifen KW - Hydrogel PY - 2013 U6 - https://doi.org/10.1039/c2an35860c SN - 0003-2654 SN - 1364-5528 VL - 138 IS - 1 SP - 325 EP - 332 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-27638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hecht, Mandy A1 - Fischer, Tobias A1 - Dietrich, Paul A1 - Kraus, Werner A1 - Descalzo López, Ana Belén A1 - Unger, Wolfgang A1 - Rurack, Knut T1 - Fluorinated Boron-Dipyrromethene (BODIPY) dyes: bright and versatile probes for surface analysis N2 - A family of bright boron-dipyrromethene-type fluorophores with a high number of fluorine atoms (F-BODIPYs) has been developed and characterized by X-ray crystallography and optical spectroscopy. The introduction of 3,5-bis(trifluoromethyl)phenyl and pentafluorophenyl moieties significantly enhances the photostability of such dyes, yielding for instance photostable near-infrared (NIR) fluorophores that show emission maxima>750 nm, when the BODIPY's π system is extended with two (dimethylamino)styryl and (dimethylamino)naphthastyryl moieties, or green-emitting BODIPYs with fluorescence quantum yields of unity. When equipped with a suitable group that selectively reacts for instance with amines, F-BODIPYs can be used as potent dual labels for the quantification of primary amino groups on surfaces by X-ray photoelectron spectroscopy (XPS) and fluorescence, two powerful yet complementary tools for the analysis of organic surface functional groups. The advantage of reactive F-BODIPYs is that they allow a fast and non-destructive mapping of the labelled supports with conventional fluorescence scanners and a subsequent quantification of selected areas of the same sample by the potentially traceable XPS technique. The performance is exemplarily shown here for the assessment of the amino group density on SiO2 supports, one of the most common reactive silica supports, in particular, for standard microarray applications. KW - Amino groups KW - Dyes KW - Fluorescence KW - Surface analysis KW - X-ray photoelectron spectroscopy KW - Amino-Gruppen KW - Farbstoffe KW - Fluoreszenz KW - Oberflächenanalytik KW - Röntgen-Photoelektronen-Spektroskopie PY - 2013 U6 - https://doi.org/10.1002/open.201200039 SN - 2191-1363 VL - 2 IS - 1 SP - 25 EP - 38 PB - Wiley-VCH-Verl. CY - Weinheim AN - OPUS4-27783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hecht, Mandy A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Sancenón, F. A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut T1 - Gated hybrid delivery systems: En route to sensory materials with inherent signal amplification N2 - Hybrid nanoparticles with a large specific surface area are a particularly exciting vehicle for delivery applications. Such highly porous or container-like structures, usually prepared from silica and frequently from gold, can incorporate a large number of chemical substances such as drug and/or indicator molecules. When equipped with a chemically or physically addressable gating function at the openings of the voids, the release of the cargo can be controlled at will. Because many more molecules can be stored as cargo in the pores of the support than there are functional groups as anchoring sites for the gating entities attached to the outer surface (for efficient pore capping), the systems possess inherent features of (signal) amplification. The present article will introduce various design strategies for different types of physical (light, temperature, magnetism) and chemical (pH, metal ions, anion, small organic molecules, enzymes) stimuli in connection with drug and indicator release. We will highlight exciting aspects of combining both features in theranostic applications and will stress which requirements still have to be met by many of the systems to be readily applicable in a sensory context. KW - Delivery systems KW - Hybrid materials KW - Molecular gates KW - Sensing KW - Theranostics KW - Freisetzungssysteme KW - Hybridmaterialien KW - Molekulare Gatter KW - Sensorik KW - Theranostik PY - 2013 U6 - https://doi.org/10.1016/j.ccr.2013.03.020 SN - 0010-8545 VL - 257 IS - 17-18 SP - 2589 EP - 2606 PB - Elsevier CY - Amsterdam AN - OPUS4-28940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Gröninger, Delia A1 - Hecht, Mandy A1 - Walter, Astrid A1 - Martínez-Mánez, Ramon A1 - Weller, Michael G. A1 - Sancenón, F. A1 - Amorós, P. A1 - Rurack, Knut T1 - Selective, sensitive, and rapid analysis with lateral-flow assays based on antibody-gated dye-delivery systems: The example of triacetone triperoxide N2 - Set them free: Brightly fluorescent indicators that are loaded into mesoporous silica nanoparticle carriers, capped with bulky antibodies, are released into the lateral flow of a test strip upon analyte arrival. Integration of the system into a rapid, simple flow test with fluorescence readout is applied for the selective and sensitive determination of the presence of triacetone triperoxide (TATP) as a prototype small-molecule analyte (see figure). KW - Farbstoffe KW - Sprengstoffe KW - Fluoreszenz KW - Immunoassays KW - Mesoporöse Materialien PY - 2013 U6 - https://doi.org/10.1002/chem.201300031 SN - 0947-6539 SN - 1521-3765 VL - 19 IS - 13 SP - 4117 EP - 4122 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hecht, Mandy A1 - Fischer, Tobias A1 - Rurack, Knut A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Development and Characterization of a Photostable Boron-dipyrromethene Dye as a Versatile Probe of the Analysis of Surface Functional Groups T2 - Nanocon2012 CY - Brno, Czech Republic DA - 2012-10-23 PY - 2012 AN - OPUS4-26848 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Biyikal, Mustafa A1 - Hecht, Mandy A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut A1 - Sancenón, F. ED - Gale, P.A. ED - Steed, J.W. T1 - Supramolecular hybrid nanomaterials as prospective sensing platforms N2 - Supramolecular interactions are vital processes in many chemical sensors, biochemical assays, and other analytical detection schemes. On the background of the current, rapidly developing, and constantly changing requirements for (bio)analytical techniques, the classical molecular host is increasingly overburdened to accomplish a specific analytical task with the desired selectivity and sensitivity. Instead, other signaling strategies have to be conceived that overcome the limits in signal output, dynamic range, or compound targeting, which are imminent to various traditional methods. A very promising approach is the combination of concepts of supramolecular chemistry with nanostructured or nanoscopic inorganic materials, that is, the development of hybrid sensor materials. Such hybrids often lead to improved functionality and enhanced performance, and the present chapter discusses the contributory features in relation to the major aspects, which are related to the enhanced coordination by the preorganization of binding sites, signal amplification by the preorganization on surfaces, aggregation‐mediated signaling, surface‐modification‐based signaling, the tuning of selectivity through polarity and size, and gated signaling. KW - Supramolekulare Chemie KW - Optische Sonden KW - Nanotechnologie KW - Hybridmaterialien KW - Fluorescence KW - Hybrid nanomaterials KW - Optical sensors KW - Redox sensors KW - Supramolecular chemistry PY - 2012 SN - 978-0-470-74640-0 U6 - https://doi.org/10.1002/9780470661345.smc199 SP - 3669 EP - 3698 PB - John Wiley & Sons AN - OPUS4-26118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Rurack, Knut A1 - Hecht, Mandy T1 - Loading and Release of Charged and Neutral Fluorescent Dyes into and from Mesoporous Materials: A Key Role for Sensing Applications N2 - The aim of this study is to determine the efficiency of loading and release of several zwitterionic, neutral, anionic and cationic dyes into/from mesoporous nanoparticles to find the optimum loading and release conditions for their application in detection protocols. The loading is carried out for MCM-41 type silica supports suspended in phosphate-buffered saline (PBS) buffer (pH 7.4) or in acetonitrile, involving the dyes (rhodamine B chloride, rhodamine 101 chloride, rhodamine 101 perchlorate, rhodamine 101 inner salt, meso-(4-hydroxyphenyl)-boron–dipyrromethene (BODIPY), sulforhodamine B sodium salt and fluorescein 27). As a general trend, rhodamine-based dyes are loaded with higher efficiency, when compared with BODIPY and fluorescein dyes. Between the rhodamine-based dyes, their charge and the solvent in which the loading process is carried out play important roles for the amount of cargo that can be loaded into the materials. The delivery experiments carried out in PBS buffer at pH 7.4 reveal for all the materials that anionic dyes are more efficiently released compared to their neutral or cationic counterparts. The overall best performance is achieved with the negatively charged sulforhodamine B dye in acetonitrile. This material also shows a high delivery degree in PBS buffer. KW - Mesoporous materials KW - Charged dyes KW - Neutral dyes KW - Dye loading optimisation KW - Dye release PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522596 UR - https://www.mdpi.com/2072-666X/12/3/249 VL - 12 IS - 3 SP - 249 PB - MDPI AN - OPUS4-52259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Hecht, Mandy A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Nanoscopic optical sensors based on functional supramolecular hybrid materials N2 - This review highlights how the combination of supramolecular principles and nanoscopic solid structures enables the design of new hybrid sensing ensembles with improved sensitivity and/or selectivity and for the targeting of analytes for which selectivity is hard to achieve by conventional methods. Such ideas are bridging the gap between molecules, materials sciences and nanotechnology. Relevant examples will be detailed, taking into account functional aspects such as (1) enhanced coordination of functionalized solids, (2) enhanced signalling through preorganization, (3) signalling by assembly–disassembly of nanoscopic objects, (4) biomimetic probes utilizing discrimination by polarity and size and (5) distinct switching and gating protocols. These strategies are opening new prospects for sensor research and signalling paradigms at the frontier between nanotechnology, smart materials and supramolecular chemistry. KW - Supramolecular chemistry KW - Optical probes KW - Nanotechnology KW - Hybrid organic-inorganic materials PY - 2011 U6 - https://doi.org/10.1007/s00216-010-4198-2 SN - 1618-2642 SN - 1618-2650 VL - 399 IS - 1 SP - 55 EP - 74 PB - Springer CY - Berlin AN - OPUS4-22908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hecht, Mandy A1 - Rurack, Knut A1 - Weller, Michael G. A1 - Panne, Ulrich T1 - Preparation and characterization of dye-doped silica nanoparticles for the red spectral region T2 - ANAKON 2011 CY - Zurich, Switzerland DA - 2011-03-22 PY - 2011 AN - OPUS4-23932 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hecht, Mandy A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Synthesis and Characterization of Red-emitting Silica-based Dye-doped Nanoparticles T2 - Hybrid Materials 2011 CY - Strasbourg, France DA - 2011-03-06 PY - 2011 AN - OPUS4-23934 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opel, J. A1 - Hecht, Mandy A1 - Rurack, Knut A1 - Eiblmeier, J. A1 - Kunz, W. A1 - Cölfen, H. A1 - Kellermeier, M. T1 - Probing local pH-based precipitation processes in self-assembled silica-carbonate hybrid materials N2 - Crystallisation of barium carbonate in the presence of silica can lead to the spontaneous assembly of highly complex superstructures, consisting of uniform and largely co-oriented BaCO3 nanocrystals that are interspersed by a matrix of amorphous silica. The formation of these biomimetic architectures (so-called silica biomorphs) is thought to be driven by a dynamic interplay between the components, in which subtle changes of conditions trigger ordered mineralisation at the nanoscale. In particular, it has been proposed that local pH gradients at growing fronts play a crucial role in the process of morphogenesis. In the present work, we have used a special pH-sensitive fluorescent dye to directly trace these presumed local fluctuations by means of confocal laser scanning microscopy. Our data demonstrate the existence of an active region near the growth front, where the pH is locally decreased with respect to the alkaline bulk solution on a length scale of few microns. This observation provides fundamental and, for the first time, direct experimental support for the current picture of the mechanism underlying the formation of these peculiar materials. On the other hand, the absence of any temporal oscillations in the local pH – another key feature of the envisaged mechanism – challenges the notion of autocatalytic phenomena in such systems and raises new questions about the actual role of silica as an additive in the crystallisation process. KW - Silikat-Karbonat-Biomaterialien KW - Self-Assembly KW - Fluoreszenz KW - PH PY - 2015 U6 - https://doi.org/10.1039/c5nr05399d SN - 2040-3364 SN - 2040-3372 VL - 7 IS - 41 SP - 17434 EP - 17440 PB - RSC Publ. CY - Cambridge AN - OPUS4-35098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Buurman, Merwe A1 - Rurack, Knut T1 - Combining a droplet-based microfluidic tubing system with gated indicator releasing nanoparticles for mercury trace detection N2 - A droplet-based microfluidic sensor was developed for the detection of Hg2+ traces in water. The approach uses gated mesoporous nanoparticles loaded with a fluorescent BODIPY dye. The squaraine-based gating mechanism is highly selective for Hg2+ and the indicator release mechanism ensures sensitive detection. The microfluidic system is modular and was assembled from simple PTFE/PFA tubes, while detection was realized with standard optomechanic, optic, and electronic parts. The sensor shows a stable response without memory effects and allows the detection of Hg2+ in water down to 20 ppt. KW - Microfluidic sensor KW - Gated delivery system KW - Fluorescence KW - Mercury KW - Hybrid nanoparticles PY - 2016 U6 - https://doi.org/10.1021/acssensors.5b00303 SN - 2379-3694 VL - 1 IS - 4 SP - 334 EP - 338 PB - American Chemical Society CY - Washington, DC AN - OPUS4-35831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Cover profile for the article "Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique" N2 - Invited for this month’s cover picture is the group of Dr. Knut Rurack at the Department of Analytical Chemistry; Reference Materials at the Bundesanstalt fuer Materialforschung und -pruefung (BAM) in Berlin (Germany). The cover picture shows how differences in color and fluorescence on a test strip can be easily read out with a mobile device. Two reference spots Frame the sensitive spot that indicates the presence of trace amounts of HgII below the threshold in a natural water sample. This dipstick contains a hybrid material that combines boron-dipyrromethene (BODIPY) probes sterically loaded into specifically tailored mesoporous silica particles, allowing for ultrasensitive HgII detection through enhanced fluorescence in a few seconds. The applicability in real water samples and fish extracts are also studied. KW - Mercury KW - Fluorescence KW - Dip-stick assay KW - Group profile PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471267 SN - 2191-1363 VL - 7 IS - 12 SP - 932 EP - 933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gotor, Raul A1 - Ashokkumar, Pichandi A1 - Hecht, Mandy A1 - Keil, Karin A1 - Rurack, Knut T1 - Optical pH Sensor Covering the Range from pH 0−14 Compatible with Mobile-Device Readout and Based on a Set of Rationally Designed Indicator Dyes N2 - In this work, a family of pH-responsive fluorescent probes has been designed in a rational manner with the aid of quantum chemistry tools, covering the entire pH range from 0−14. Relying on the boron−dipyrromethene (BODIPY) core, all the probes as well as selected reference dyes display very similar spectroscopic properties with ON−OFF fluorescence switching responses, facilitating optical readout in simple devices used for detection and analysis. Embedding of the probes and reference dyes into hydrogel spots on a plastic strip yielded a test strip that reversibly indicates pH with a considerably small uncertainty of ~0.1 pH units. These strips are not only reusable but, combined with a 3D-printed case that can be attached to a smartphone, the USB port of which drives the integrated LED used for excitation, allows for autonomous operation in on-site or in-the-field applications; the developed Android application software (“app”) further simplifies operation for unskilled users. KW - Fluorescence KW - pH measurement KW - BODIPY KW - Smartphone KW - Test strip PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-422571 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 16 SP - 8437 EP - 8444 PB - American Chemical Society CY - Washington, D.C., USA AN - OPUS4-42257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique N2 - The synthesis, characterization, and application of mesoporous materials containing boron–dipyrromethene (BODIPY) moieties that allow the sensitive and selective detection of HgII in aqueous environments by fluorescence enhancement is reported. For this purpose, BODIPY dye I containing a thia‐aza crown ether receptor as the fluorescent probe for the detection of HgII in aqueous environments is encapsulated into mesoporous materials to avoid self‐quenching or aggregation in water. Determination of HgII is accomplished within a few seconds with high selectivity and sensitivity, reaching a limit of detection of 12 ppt. The determination of trace amounts of HgII in natural waters and in fish extracts is demonstrated by using our sensing material. The incorporation of the material into several μ‐PAD strips yields a portable, cheap, quick, and easy‐to‐handle tool for trace HgII analysis in water. KW - Dyes/pigments KW - Test strips KW - Mesoporous materials KW - Mercury KW - Fluorescence PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-460138 SN - 2191-1363 VL - 7 IS - 12 SP - 957 EP - 968 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -