TY - JOUR A1 - Mozetic, M. A1 - Ostrikov, K. A1 - Ruzic, D.N. A1 - Curreli, D. A1 - Cvelbar, U. A1 - Vesel, A. A1 - Primc, G. A1 - Leisch, M. A1 - Jousten, K. A1 - Malyshev, O.B. A1 - Hendricks, J.H. A1 - Kövér, L. A1 - Tagliaferro, A. A1 - Conde, O. A1 - Silvestre, A.J. A1 - Giapintzakis, J. A1 - Buljan, M. A1 - Radic, N. A1 - Drazic, G. A1 - Bernstorff, S. A1 - Biedermann, H. A1 - Kylián, O. A1 - Hanus, J. A1 - Milosevic, S. A1 - Galtayries, A. A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Lehocky, M. A1 - Sedlarik, V. A1 - Stana-Kleinschek, K. A1 - Drmota-Petric, A. A1 - Pireaux, J.J. A1 - Rogers, J.W. A1 - Anderle, M. T1 - Recent advances in vacuum sciences and applications N2 - Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid–liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented. KW - Vacuum KW - Surface KW - Plasma KW - Interface KW - Nanoscience PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-304884 SN - 0022-3727 SN - 1361-6463 VL - 47 IS - 15 SP - 153001-1 EP - 153001-23 PB - IOP Publ. CY - Bristol AN - OPUS4-30488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pleskunov, P. A1 - Nikitin, D. A1 - Tafiichuk, R. A1 - Shlemin, A. A1 - Hanus, J. A1 - Kousal, J. A1 - Krtous, Z. A1 - Khalakhan, I. A1 - Kus, P. A1 - Nasu, T. A1 - Nagahama, T. A1 - Funaki, C. A1 - Sato, H. A1 - Gawek, Marcel A1 - Schönhals, Andreas A1 - Choukourov, A. T1 - Plasma polymerization of acrylic acid for the tunable synthesis of glassy abd carboxylated nanoparticle N2 - Polymer nanoparticles (NPs) can be highly attractive in numerous applications including biomedicine where the use of inorganic matter may be detrimental for living tissues. In conventional wet chemistry, polymerization and functionalization of NPs with specific chemical groups involves complex and often numerous reactions. Here, we report on a solvent-free, single-step, low temperature plasma-based synthesis of carboxylated NPs produced by polymerization of acrylic acid under the conditions of a glow discharge. In a monomer-deficient regime, strong fragmentation of the monomer molecules by electron impact results in the formation of 15 nm-sized NPs with <1% retention of the carboxyl groups. In an energy-deficient regime, larger 90 nm-sized NPs are formed with better retention of the carboxyls that reaches 16 %. All types of the NPs exhibit the glass transition above the room temperature which makes them highly stable under aqueous environment with no dissolution or swelling. They are also found to degrade thermally when heated above 150 °C with a decrease of the mean NP size, yet with the retention of the chemical composition. Thus, plasma polymerization proves to be a versatile approach for the production of polymer NPs with tuneable size distribution, chemical composition and physical properties. KW - Nanoparticles PY - 2020 U6 - https://doi.org/10.1021/acs.jpcb.9b08960 VL - 124 SP - 668 EP - 678 PB - ACS AN - OPUS4-50351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Madkour, Sherif A1 - Pleskunov, P A1 - Tafiichuk, R A1 - Shelemin, A A1 - Hanus, J A1 - Gordeev, I A1 - Sysolyatina, E A1 - Ermolaeva, S A1 - Titov, V A1 - Schönhals, Andreas A1 - Choukourov, A T1 - Cu nanoparticles constrain segmental dynamics of crosslinked polyethers: a trade -off between non-fouling and antibacterial properties N2 - Copper has a strong bactericidal effect against multi-drug resistant pathogens and polyethers are known for their resistance to biofilm formation. Herein, we combined Cu nanoparticles (NPs) and a polyether Plasma polymer in the form of nanocomposite thin films and studied whether both effects can be coupled. Cu NPs were produced by magnetron sputtering via the aggregation in a cool buffer gas whereasolyether layers were synthesized by Plasma-Assisted Vapor Phase Deposition with poly(ethylene oxide) (PEO) used as a precursor. In situ specific heat spectroscopy and XPS analysis revealed the formation of a modified polymer layer around the NPs which propagates on the scale of a few nanometers from the Cu NP/polymer interface and then transforms into a bulk polymer phase. The chemical composition of the modified layer is found to be ether-deficient due to the catalytic influence of copper whereas the bulk polymer Phase exhibits the chemical composition close to the original PEO. Two cooperative glass transition phenomena are revealed that belong to the modified polymer layer and the bulk phase. The former is characterized by constrained mobility of polymer segments which manifests itself via a 30 K increase of dynamic glass transition temperature. Furthermore, the modified layer is characterized by the heterogeneous structure which results in higher fragility of this layer as compared to the bulk phase. The Cu NPs/polyether thin films exhibit reduced Protein adsorption; however, the constrained segmental dynamics leads to the Deterioration of the non-fouling properties for ultra-thin polyether coatings. The films are found to have a bactericidal effect against multi-drug resistant Gram-positive Methicillin-Resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. KW - Nanocomposites KW - Specific heat spectroscopy PY - 2019 U6 - https://doi.org/10.1039/c8sm02413h VL - 15 IS - 13 SP - 2884 EP - 2896 PB - RSC AN - OPUS4-47765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -