TY - JOUR A1 - Muhammad, S. A1 - Han, S.W. A1 - Na, S.J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on the role of recondensation flux in high power laser welding by computational fluid dynamics simulations N2 - Partial penetration welding with fiber laser on 20mm thick plates was carried out in horizontal position to study the role of secondary heating in modeling of high power fiber laser welding. Experiments were carried out using 18.8kW laser with 1.5 m/min welding speed at Ar assist gas flow rates of 0, 17, 29, and 40 l/min, all four cases show similar bead shape with bright emission of vapor plume. Numerical simulations were performed using volume of fluid method by considering three different models as models A–C. Model A considers only Fresnel reflection inside the keyhole using real time tracking of free surface. Model B considers vapor recondensation flux inside keyhole along with model A. Finally, model C is used, which considers vapor plume heating at 4100K temperature along with models A B. Secondary heating by recondensation and vapor plume is vital in modeling of high power fiber laser welding; especially, the upper part of the bead is more influenced due to secondary heating. Tungsten particles are also used to visualize the flow pattern of melt pool. KW - Laser keyhole welding KW - Fresnel reflection KW - Secondary heat source KW - Plume heating KW - Vapor recondensation KW - High brightness KW - High power KW - Partial penetration KW - Fiber laser PY - 2018 U6 - https://doi.org/10.2351/1.4994246 SN - 1042-346X SN - 1938-1387 VL - 30 IS - 1 SP - 012013-1 EP - 012013-12 PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-44345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Na, S.-J. A1 - Han, S.-W. A1 - Muhammad, S. A1 - Zhang, L. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Karhu, M. A1 - Kujanpa, V. T1 - Flow and Bead Formation Characteristics in High Power Laser Welding at Different Welding Positions (Invited Talk) N2 - The numerical simulations of high power laser keyhole welding at different welding positions are performed by using Volume-Of-Fluid (VOF) method. The main material is SS400. The multi-physics phenomenon is considered using several models, such as the heat flux of Gaussian heat source, the recoil pressure with Clausisus-Clapeyron equation, the Marangoni flow considering temperature gradient, the buoyancy force with Boussinesq approximation, the additional shear stress and heat source due to metallic vapor ejected through keyhole entrance, the bubble formation assumed as adiabatic bubble, and the multiple-reflection by solving proper discriminant, are used. To analyze the fluid flow pattern, the concept of streamline formed by reconstructing the value of the velocity vector is applied. Partial and full penetration cases at different welding positions are considered. The welding position seems to have only a minor influence on bead formation characteristics in both cases. This is probably due to the fact that the recoil pressure has a major influence when compared to other driving forces. The flow characteristics and fluid velocity in weld pool are analyzed to compare the gravity direction effect at different welding positions. It is observed that the clockwise flow pattern is mainly formed by the recoil pressure on the keyhole surface in the case of partial penetration. The laser energy can't maintain the whole weld pool when the weld pool size becomes too large. And then the solidification starts from the middle part of weld pool and a necked weld pool shape is formed. In the full penetration welding, the weld pool flow patterns are affected by the leakage of laser power through the full penetration keyhole and also by surface tension. Furthermore, the numerical simulation of full penetration welding with AISI316L is also performed to analyze the effect of material properties. The weld bead shapes obtained by simulations were compared with the corresponding experimental results to confirm the validity of the process models adopted and the CFD simulation tool. T2 - Lasers in Manufacturing Conference 2015 CY - München, Germany DA - 22.06.2015 KW - Macro Processing (Joining, Welding) KW - Weld pool KW - Flow pattern KW - Different welding position KW - Numerical simulation KW - High power laser keyhole welding PY - 2015 SP - 1 EP - 6 AN - OPUS4-37163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sohail, M. A1 - Han, S.-W. A1 - Na, S.-J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical investigation of energy input characteristics for high-power fiber laser welding at different positions N2 - Partial penetration welding with a fiber laser at a 9-kW laser power was carried out on 20-mm-thick plates at different positions and analyzed by both experimental and numerical methods. Experiments were carried out for four different angular positions at 1.5 m/min welding speed. All four cases showed a tail-like structure of molten pool on the top surface. The in-depth mechanisms of the energy input characteristics in fiber laser position welding for eight different positions were studied by numerical simulation using the volume-of-fluid (VOF) method. Experimental and numerical results were compared for four cases and showed fair agreement. Observation of flow pattern and bead shape revealed that gravity had little influence on bead shape and flow structure, but changed the pore structure considerably. Flow structure showed a periodic behavior which probably nullified the effect of gravity in position welding. Most of the laser rays reached the bottom of the keyhole without interruption and then multiple reflections started within the keyhole. The first five reflections inside the keyhole delivered around 70 % of the total energy. KW - Laser keyhole welding KW - Fiber laser KW - Partial penetration KW - Position welding KW - Pipe welding PY - 2015 U6 - https://doi.org/10.1007/s00170-015-7066-6 SN - 0268-3768 SN - 1433-3015 VL - 80 IS - 5 SP - 931 EP - 946 PB - Springer CY - London AN - OPUS4-35121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sohail, M. A1 - Han, S.-W. A1 - Na, S.-J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Characteristics of weld pool behavior in laser welding with various power inputs N2 - This paper investigates the numerical simulations of multi-kilowatt disk laser and fiber laser welding, ranging from 6 to 18 kW to study the behavior of molten pool in 20-mm-thick steel plate by using Volume-Of-Fluid (VOF) method and several mathematical models like Gaussian heat source, recoil pressure, Marangoni flow, buoyancy force, and additional shear stress and heat source due to the metallic vapor. Vortex flow pattern is observed for higher laser power except for 6-kW case, and the higher the laser power, the bigger the vortex flow pattern. Welding speed has an influence on molten pool in terms of depth of penetration and size of molten pool, but overall shape of molten pool remains the same. The reasons for the vortex flow pattern in high-power laser welding are the absorption of more energy at the bottom of keyhole, which promotes more liquid metal at the bottom, while for lower power with lower speed, the melt formation is more uniform in the thickness direction and most of the molten metal in the lower part of keyhole reaches the top of molten pool, and consequently, no vortex flow pattern is observed in the keyhole bottom. KW - Laser welding KW - Mathematical models KW - Simulating KW - Molten pool KW - Flow PY - 2014 U6 - https://doi.org/10.1007/s40194-014-0112-4 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 3 SP - 269 EP - 277 PB - Springer CY - Oxford AN - OPUS4-30644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -