TY - JOUR A1 - Hahn, Marc Benjamin A1 - Uhlig, F. A1 - Solomun, Tihomir A1 - Smiatek, J. A1 - Sturm, Heinz T1 - Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects of aqueous solutions N2 - Ectoine is an important osmolyte, which allows microorganisms to survive in extreme environmental salinity. The hygroscopic effects of ectoine in pure water can be explained by a strong water binding behavior whereas a study on the effects of ectoine in salty solution is yet missing. We provide Raman spectroscopic evidence that the influence of ectoine and NaCl are opposing and completely independent of each other. The effect can be explained by the formation of strongly hydrogen-bonded water molecules around ectoine which compensate the influence of the salt on the water dynamics. The mechanism is corroborated by first principles calculations and broadens our understanding of zwitterionic osmolytes in aqueous solution. Our findings allow us to provide a possible explanation for the relatively high osmolyte concentrations in halotolerant bacteria. KW - Ectoine KW - Aqueous solution KW - Biological structure KW - Organic osmolytes KW - Raman spectroscopy KW - Water structure PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-376761 UR - http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp05417j#!divAbstract VL - 18 IS - 41 SP - 28398 EP - 28402 PB - Royal Society of Chemistry CY - UK AN - OPUS4-37676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Wellhausen, Robert A1 - Herrmann, S A1 - Seitz, H A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Zeman, J. A1 - Uhlig, F A1 - Smiatek, J A1 - Sturm, Heinz T1 - Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA N2 - Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms. KW - Aqueous solution KW - Biological structure KW - Raman spectroscopy KW - Organic osmolytes KW - High throughput KW - Gene-5 protein KW - Amino acid KW - Water structure PY - 2015 U6 - https://doi.org/10.1021/acs.jpcb.5b09506 SN - 1520-6106 SN - 1089-5647 SN - 1520-5207 VL - 119 IS - 49 SP - 15212 EP - 15220 AN - OPUS4-35800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -