TY - GEN A1 - Smales, Glen Jacob A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - X-ray scattering datasets and simulations associated with the publication "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - This dataset contains the processed and analysed small-angle X-ray scattering data associated with all samples from the publications "Bio-SAXS of Single-Stranded DNA-Binding Proteins: Radiation Protection by the Compatible Solute Ectoine" (https://doi.org/10.1039/D2CP05053F). Files associated with McSAS3 analyses are included, alongside the relevant SAXS data, with datasets labelled in accordance to the protein (G5P), its concentration (1, 2 or 4 mg/mL), and if Ectoine is present (Ect) or absent (Pure). PEPSIsaxs simulations of the GVP monomer (PDB structure: 1GV5 ) and dimer are also included. TOPAS-bioSAXS-dosimetry extension for TOPAS-nBio based particle scattering simulations can be obtained from https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry which is further described in https://doi.org/10.26272/opus4-55751. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 442240902 (HA 8528/2-1 and SE 2999/2-1). We acknowledge Diamond Light Source for time on Beamline B21 under Proposal SM29806. This work has been supported by iNEXT-Discovery, grant number 871037, funded by the Horizon 2020 program of the European Commission. KW - SAXS KW - Radiation protection KW - Microdosimetry KW - G5P KW - Ectoine KW - DNA-Binding protein PY - 2023 U6 - https://doi.org/10.5281/zenodo.7515394 PB - Zenodo CY - Geneva AN - OPUS4-56811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - The change of DNA radiation damage upon hydration: In-situ observations by near-ambient-pressure XPS N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Cancer treatment KW - DNA KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - particle scattering KW - Simulation KW - Radiolysis KW - Radiation therapy KW - Radiotherapy KW - LEE KW - Low energy electrons KW - MCS KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Double-strand break (DSB) KW - Hydrated DNA KW - Hydrated electron KW - Ionization KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Prehydrated electron KW - Quasi-direct damage KW - Radiation damage KW - Radical KW - Reactive oxygen species KW - ROS KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - presolvated electron PY - 2023 UR - https://www.nature.com/articles/s42004-021-00487-1 AN - OPUS4-57063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Seitz, H. A1 - Smales, Glen Jacob T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Particle scattering simulations KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas KW - Topas-MC KW - Topas-nBio KW - X-ray scattering KW - ssDNA KW - Osmolyte KW - Hydroxyectoine KW - Compatible solute KW - ROS KW - radical scavenger PY - 2023 UR - https://pubs.rsc.org/en/content/articlehtml/2023/cp/d2cp05053f AN - OPUS4-57064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Solomun, Tihomir A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - The change of dna and protein radiation damage upon hydration: in-situ observations by near-ambient-pressure xps N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. Furthermore, first data about the degradation of single-stranded DNA binding-proteins (G5P / GV5 and hmtSSB) under vacuum and NAP-XPS conditions are presented. T2 - AVS69 CY - Portland, USA DA - 05.11.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - Protein KW - Proteins KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - NAP-XPS KW - Xray photo electron spectrocopy KW - Radiation damage KW - Geant4-DNA KW - G5P KW - GVP KW - Hydroxyl radical KW - LEE KW - DEA KW - DET KW - ROS KW - Prehydrated electron KW - TOPAS KW - Near ambient pressure xray photo electron spectroscopy KW - SSB KW - DSB KW - Single-strand break (SSB) KW - ESCA KW - Single-stranded DNA-binding proteins KW - Reactive oxygen species PY - 2023 AN - OPUS4-58761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radiotherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - beta particle KW - particle scattering PY - 2023 AN - OPUS4-57060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Meyer, S. A1 - Schröter, M.-A. A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine protects biomolecules from ionizing radiation: Molecular mechanisms N2 - The compatible solute and osmolyte ectoine is an effective protectant of biomolecules and whole cells against heating, freezing and high salinity. The protection of cells (human Keratinocytes) by ectoine against ultraviolet radiation was also reported by various authors, although the underlying mechanism is not yet understood. We present results on the irradiation of biomolecules (DNA) with ionizing radiation (high energy electrons) in fully aqueous environment in the presence of ectoine and high salt concentrations. The results demonstrate an effective radiation protection of DNA by ectoine against the induction of single strand breaks by ionizing radiation. The effect is explained by an increased in low-energy electron scattering at the enhanced free-vibrational density of states of water due to ectoine, as well as the action of ectoine as an OH-radical scavenger. This was demonstrated by Raman spectroscopy, electron paramagnetic resonance (EPR) and Monte-Carlo simulations (Geant4). T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Compatible solute KW - Dosimetry KW - Ectoine KW - Ectoin KW - Ectoine radiation protection KW - Ectoine radical scavenger KW - Geant4 KW - Geant4-DNA KW - Hydroxyectoine KW - Hydroxyl radical KW - Ionizing radiation KW - Low energy electrons KW - LEE KW - OH-radical KW - DNA KW - Osmolyte KW - Radiation damage KW - Radiation protection KW - Radical scavenger KW - Radiation therapy PY - 2023 AN - OPUS4-57061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Exchange interaction KW - Ferromagnetism KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Micromagnetism KW - OOMMF KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2023 AN - OPUS4-57062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 U6 - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Radnik, Jörg A1 - Dietrich, P. M. T1 - Near-ambient-pressure Xray photoelectron spectroscopy (XPS) to monitor DNA radiation damage directly in water N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - RADeleven CY - Herceg Novi, Montenegro DA - 19.06.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break (DSB) KW - ESCA KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydrated electrons KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionisation KW - Ionization KW - LEE KW - DEA KW - DET KW - Low energy electrons KW - MCS KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Particle scattering KW - Prehydrated electron KW - Presolvated electron KW - Protein KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Radiolysis KW - Radiotherapy KW - Reactive oxygen species KW - Simulation KW - Single-strand break (SSB) KW - Single-stranded DNA-binding proteins KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray photo electron spectrocopy PY - 2023 AN - OPUS4-57782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. KW - BioSAXS KW - Bio-SAXS KW - Cosolute KW - Ectoine KW - G5P KW - GVP KW - Radiation damage KW - Radical Scavenger KW - Single-stranded DNA-binding proteins KW - X-ray scattering KW - DNA KW - ssDNA KW - Protein KW - SAXS KW - Small-angle xray scattering KW - McSAS3 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - Topas KW - Topas-MC KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Topas-nBio KW - OH Radical KW - OH radical scavenger KW - LEE KW - Ionizing radiation damage KW - Protein unfolding KW - Ectoin PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568909 SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5372 EP - 5382 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -