TY - JOUR A1 - Martins, I. A1 - Carta, M. A1 - Haferkamp, Sebastian A1 - Feiler, Torvid A1 - Delogu, F. A1 - Colacino, E. A1 - Emmerling, Franziska T1 - Mechanochemical N‑Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X‑ray Diffraction and Raman Spectroscopy N2 - Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The Crystal structure of the starting material EDMH and the 1-chloro-3-ethyl5,5′-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed. KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination KW - Kinetics KW - Hydantoin KW - Powder X-ray diffraction KW - Raman spectroscopy PY - 2021 U6 - https://doi.org/10.1021/acssuschemeng.1c03812 VL - 9 IS - 37 SP - 12591 EP - 12601 AN - OPUS4-53541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 U6 - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Haferkamp, Sebastian A1 - Kraus, Werner T1 - Studies on the mechanochemical Knoevenagel condensation of fluorinated benzaldehyde derivates N2 - The mechanochemical Knoevenagel condensation of three fluorinated benzaldehyde derivates and malononitrile was investigated. The reactions were performed under solvent- and catalyst-free conditions and resulted in highly crystalline products after crystallization from a viscous phase in the milling jar. The quality of the obtained crystals was sufficient for single-crystal X-ray diffraction circumventing a recrystallization step. To gain more information on the reaction, progress was investigated in situ using time-resolved Raman spectroscopy. The results show a direct conversion of the reactants. KW - C-C coupling KW - Knoevenagel condensation KW - In situ KW - Mechanochemistry PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2492-0 SN - 0022-2461 VL - 53 IS - 19 SP - 13713 EP - 13718 PB - Springer Link AN - OPUS4-45682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-481872 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, H. A1 - Rademann, K. T1 - Insights into mechanochemical Knoevenagel condensations N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there is a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of of our approach is shown for diffrent model reactions. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Mechanochemistry KW - In situ KW - Knoevenagel condensation PY - 2019 AN - OPUS4-49694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Fischer, Franziska A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - Mechanochemical Knoevenagel condensation investigated in situ N2 - The mechanochemical Knoevenagel condensation of malononitrile with p-nitrobenzaldehyde was studied in situ using a tandem approach. X-ray diffraction and Raman spectroscopy were combined to yield time-resolved information on the milling process. Under solvent-free conditions, the reaction leads to a quantitative conversion to p-nitrobenzylidenemalononitrile within 50 minutes. The in situ data indicate that the process is fast and proceeds under a direct conversion. After stopping the milling process, the reaction continues until complete conversion. The continuous and the stopped milling process both result in crystalline products suitable for single crystal X-ray diffraction. KW - Mechanochemistry KW - Ball milling KW - C–C coupling KW - In situ KW - Knoevenagel condensation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-425388 VL - 13 SP - 2010 EP - 2014 PB - Beilstein-Institut AN - OPUS4-42538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - In situ investigations of mechanochemical reactions N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there remains a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of our approach is shown for different model reactions. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - In situ KW - Mechanochemistry KW - Milling PY - 2019 AN - OPUS4-47701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -