TY - JOUR A1 - Herter, Sven-Oliver A1 - Koch, Matthias A1 - Haase, Hajo T1 - First Synthesis of Ergotamine-13CD3 and Ergotaminine-13CD3 from Unlabeled Ergotamine N2 - Ergot alkaloids (EAs) formed by Claviceps fungi are one of the most common food contaminants worldwide, affecting cereals such as rye, wheat, and barley. To accurately determine the level of contamination and to monitor EAs maximum levels set by the European Union, the six most common EAs (so-called priority EAs) and their corresponding epimers are quantified using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The quantification of EAs in complex food matrices without appropriate internal tandards is challenging but currently carried out in the standard method EN 7425:2021 due to their commercial unavailability. To address the need for isotopically labeled EAs, we focus on two semi-synthetic approaches for the synthesis of these reference standards. Therefore, we investigate the feasibility of the N6-demethylation of native ergotamine to yield norergotamine, which can subsequently be remethylated with an isotopically labeled methylating reagent, such as iodomethane (13CD3-I), to yield isotopically labeled ergotamine and its C8-epimer ergotaminine. Testing the isotopically labeled ergotamine/-inine against native ergotamine/-inine with HPLC coupled to high-resolution HR-MS/MS proved the structure of ergotamine-13CD3 and ergotaminine-13CD3. Thus, for the first time, we can describe their synthesis from unlabeled, native ergotamine. Furthermore, this approach is promising as a universal way to synthesize other isotopically labeled EAs. KW - Reference Material KW - HPLC-MS/MS KW - Mycotoxins KW - Standards KW - Organic Synthesis KW - Isotope PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600167 DO - https://doi.org/10.3390/toxins16040199 VL - 16 IS - 4 SP - 1 EP - 12 PB - MDPI AN - OPUS4-60016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholl, Juliane A1 - Lisec, Jan A1 - Bagheri, Abbas A1 - Meiers, Emelie A1 - Russo, Francesco Friedrich A1 - Haase, Hajo A1 - Koch, Matthias T1 - Unveiling aging mechanisms of electrolytes in commercial end-of-life lithium-ion batteries N2 - In this study, 77 end-of-life (EOL) commercial lithium-ion batteries (LIBs) of various formats were systematically analyzed to investigate electrolyte degradation and the influence of pristine electrolyte compositions on aging behavior. Comprehensive chemical characterization was conducted using targeted and non-targeted mass spectrometry (MS), employing LC-MS/MS, GC-MS, and high-resolution MS (HRMS). This integrated approach enabled the identification of confirmed pristine components and complex degradation products. The results show that rechargeable pouch and cylindrical cells often deviate from conventional model systems, containing mixed lithium salt anions, ionic liquids (ILs), and high concentrations of triflates, triflimides, and bis(fluorosulfonyl)imide (FSI). These function as solvents, salts, or safety-enhancing additives. Specific IL degradation products were identified, and hypotheses formulated on previously unreported pathways. Furthermore, a novel series of oligomerization products of propylene carbonate (PC) was detected. In contrast, non-rechargeable coin cells revealed widespread use of per- and polyfluoroalkyl substances (PFAS) in their original electrolytes. Based on ex situ analyses, hypothetical PFAS degradation mechanisms are proposed here for the first time. The absence of carbonate oligomers and lithium salt-derived products, alongside the presence of standard carbonates, indicates lithium counterion coordination as a key factor in Lewis acid-catalyzed degradation. This study offers valuable insights into real-world battery aging. KW - Transformation products KW - Lithium-ion batteries KW - Fluorinated Compounds KW - Gas chromatography/ QTOF-MS KW - HILIC-LC-MS/MS KW - PFAS KW - Electrochemistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644991 DO - https://doi.org/10.1016/j.jpowsour.2025.238613 SN - 0378-7753 VL - 661 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-64499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herter, Sven-Oliver A1 - Haase, Hajo A1 - Koch, Matthias T1 - Semisynthesis of Stable Isotope-Labeled Ergot Alkaloids for HPLC-MS/MS Analysis N2 - Ergot alkaloids (EAs) are prevalent food contaminants affecting cereals, such as rye, wheat, and barley worldwide. To ensure EU safety standards, the six most common EAs: ergometrine, ergotamine, ergosine, ergocornine, ergocristine, and ergocryptine, and their epimers, are quantified using HPLC-MS/MS, as described in the European Standard Method EN 17425:2021. However, this can be challenging and time-consuming in food matrices without appropriate internal standards and highlights the need for more robust and precise analytical tools to support their monitoring. The development of isotope-labeled EAs directly addresses this gap, offering improved accuracy and leading to more consistency across laboratories and consequently to more consumer safety. Therefore, we developed a semisynthetic approach, building upon our previous work where native ergotamine was N6-demethylated to norergotamine and subsequently remethylated using iodomethane (13CD3-I). Herein, we are now able to present the successful synthesis of all of the isotopically labeled priority EAs. These isotope-labeled standards were tested against their native counterparts using HPLC coupled with HR-MS/MS. The chromatographic and mass spectrometric properties of the unlabeled and isotopically labeled EAs match exactly, confirming their successful synthesis and structure. These standards can now be utilized to enhance the accuracy and reliability of EA quantification in food and feed. KW - Reference Material KW - HPLC-MS/MS KW - Mycotoxins KW - Ergot Alkaloids KW - Stable Isotope Dilution Analysis KW - Semisynthesis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639692 DO - https://doi.org/10.1021/acs.jafc.5c03345 SN - 0021-8561 VL - 73 IS - 29 SP - 18412 EP - 18419 PB - American Chemical Society (ACS) AN - OPUS4-63969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuner, Maximilian A1 - Lisec, Jan A1 - Picher, Marie-Idrissa A1 - Rigo, Massimo A1 - Konetzki, Jörg A1 - Haase, Hajo A1 - Koch, Matthias T1 - Development and Application of Isotope Labelled Internal Standards in a Sum Parameter Method for Ergot Alkaloid Screening of Food N2 - Ergot alkaloids are a group of toxic compounds, formed by fungi on infested grasses. In 2022, the European Commission set into effect maximum levels for the sum of the twelve major ergot alkaloids in multiple foods. To facilitate the laborious and costly individual quantification of the twelve major ergot alkaloids by HPLC–MS/MS or -FLD, we recently reported a sum parameter method (SPM) for ergot alkaloid quantification. Here, derivatization to lysergic acid hydrazide—a derivative of the mutual ergoline backbone in all ergot alkaloids—allowed simplified determination of all ergot alkaloids in flour via HPLC-FLD. For the measurement of more complex matrices like processed foods, we now developed a MS/MS-based SPM. Two internal standards (IS), isotopically labelled at different positions of the molecule, were synthesized and employed in the MS/MS-measurements. Method performance using either the 13CD3-labelled or the 15N2-labelled IS was evaluated on naturally contaminated rye and wheat flour samples as well as on processed food matrices. Employing the 13CD3-labelled IS leads to lower variances and better consistency with the reference data (obtained by the FLD-based SPM) in flour samples compared to the 15N2-labelled IS. The novel method significantly improves the measurement of ergot alkaloids in complex food matrices, due to their increased selectivity and thus lower interferences. Furthermore, the application of isotope labelled IS obviates the need for time-consuming steps like the determination of recovery rate based, matrix specific correction factors as described in the MS/MS-based European standard method for ergot alkaloid quantification (EN 17425). KW - Mycotoxins KW - Sum Parameter Method KW - Isotope Labelling KW - HPLC-MS/MS KW - Analytical Chemistry KW - Lysergic acid hydrazide PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588582 DO - https://doi.org/10.1007/s12161-023-02553-x SN - 1936-976X VL - 17 IS - 1 SP - 119 EP - 128 PB - Springer CY - New York, NY AN - OPUS4-58858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Scholl, Juliane A1 - Bagheri, Abbas A1 - Meiers, Emelie A1 - Lisec, Jan A1 - Russo, Francesco A1 - Haase, Hajo A1 - Koch, Matthias T1 - Unveiling Aging Mechanisms of Electrolytes in Commercial End-of-Life Lithium-Ion Batteries N2 - In this study, 77 end-of-life (EOL) commercial lithium-ion batteries (LIBs) of different formats were systematically analyzed to investigate electrolyte degradation mechanisms and the influence of pristine electrolyte composition on aging. Comprehensive chemical characterization employed targeted and non-targeted mass spectrometry (MS), combining liquid and gas chromatography (LC-MS/MS, GC-MS) with high-resolution MS (HRMS). This approach identified confirmed pristine components and complex degradation products. Commercial rechargeable pouch and cylindrical cells often deviated from conventional research model systems, using mixed lithium salt anions, ionic liquids (ILs), and high concentrations of triflates, triflimides, and bis(fluorosulfonyl)imide (FSI), functioning as solvents, salts, or additives. Specific IL degradation products and previously unreported pathways were proposed. A novel series of oligomerization products from propylene carbonate (PC) was also identified. In contrast, non-rechargeable coin cells showed prevalent use of per- and polyfluoroalkyl substances (PFAS) in their original electrolytes. Distinct PFAS degradation mechanisms were proposed for the first time. The absence of carbonate oligomers and lithium salt-derived products in coin cells, alongside standard carbonates, suggests lithium counterion coordination critically influences Lewis acid-catalyzed degradation. These findings provide new insight into real-world LIB aging, highlighting differences between commercial devices and model systems. KW - Mass Spectrometry KW - PFAS KW - Electrolyte degradation KW - Transformation products KW - Battery aging PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641059 DO - https://doi.org/10.2139/ssrn.5395937 SP - 1 EP - 15 PB - Elsevier BV AN - OPUS4-64105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholl, Juliane A1 - Lisec, Jan A1 - Haase, Hajo A1 - Koch, Matthias T1 - Identification of transformation products from fluorinated lithium-ion battery additives TPFPB and TPFPP: forever chemicals of tomorrow? N2 - AbstractFluorinated organic compounds (FOCs) represent a class of synthetic chemicals distinguished by their resilient carbon–fluorine bonds, which demonstrate an ability to withstand environmental degradation over an extended period. The integration of FOCs into cutting-edge applications, including lithium-ion batteries (LiBs), presents considerable potential for environmental harm that has not yet been sufficiently addressed. This study focuses on the environmental fate of two fluorinated aromatics, tris(pentafluorophenyl)borane (TPFPB) and tris(pentafluorophenyl)phosphine (TPFPP), given their important role in improving the performance of LiBs. To achieve this, laboratory simulation methods including total oxidizable precursor assay, electrochemistry (EC), Fenton reaction, UV-C irradiation, and hydrolysis were employed. Liquid chromatography and gas chromatography coupled with high-resolution mass spectrometry were used for identification of transformation products (TPs) and prediction of their molecular formulae. Despite the structural similarity between TPFPB and TPFPP, distinct differences in electrochemical behavior and degradation pathways were observed. TPFPB readily underwent hydroxylation and hydrolysis, resulting in a wide range of 49 TPs. A total of 28 TPs were newly identified, including oligomers and highly toxic dioxins. In contrast, TPFPP degraded exclusively under harsh conditions, requiring the development of innovative conditioning protocols for EC. In total, the simulation experiments yielded nine structurally different compounds, including seven previously undescribed, partially defluorinated TPs. This study highlights the potential risks associated with the use of FOCs in LiBs and provides insight into the complex environmental behavior of FOCs. KW - Mass Spectrometry KW - LiBs KW - POPs KW - Transformation products KW - Electrochemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611339 DO - https://doi.org/10.1007/s00216-024-05526-z SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-61133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholl, Juliane A1 - Meiers, Emelie A1 - Mauch, Tatjana A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Weinfurtner, Karlheinz A1 - Haase, Hajo A1 - Koch, Matthias T1 - Approaches towards sensitive and reliable determination of trifluoroacetic acid (TFA) from German grass- and farmland soils N2 - In light of the emerging threat of environmental contamination from per- and polyfluoroalkyl substances (PFAS), there is a growing need for analytical techniques that can be applied to a range of environmental matrices, including water, air, plant, and soil samples. Trifluoroacetic acid (TFA) is a member of the PFAS class, representing the shortest perfluorinated carboxylic acid and is an emerging pollutant whose environmental levels are expected to increase in the future. Soil matrices represent the interface between plant and ecosystem uptake of TFA, but contamination is poorly understood, largely due to a lack of uniform TFA determination methods. This study compares six ways of determining TFA in soils and highlights their limitations. We present a validated sample preparation method with high recoveries (104 %), low LOD (0.015 ng/g) and LOQ (0.045 ng/g). This approach includes isotope dilution analysis with hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) detection. The method was applied to quantify the TFA content in 100 soil samples from grassland and farmland across Germany. The results indicate the ubiquity of TFA, accompanied by elevated contamination levels in certain locations. An analysis of variance revealed no correlation with collection site and designation purpose. However, a low correlation was observed with dry bulk density. KW - PFAS KW - Extraction methods KW - HILIC-MS/M KW - Emerging pollutant KW - German soil protection PY - 2025 DO - https://doi.org/10.1016/j.chemosphere.2025.144496 SN - 0045-6535 VL - 382 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-63499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Haase, Hajo A1 - Koch, Matthias T1 - Electrochemical simulation of biotransformation reactions of citrinin and dihydroergocristine compared to UV irradiation and Fenton-like reaction N2 - Mycotoxins occur widely in foodstuffs and cause a variety of mold-related health risks to humans and animals. Elucidation of the metabolic fate of mycotoxins and the growing number of newly discovered mycotoxins have enhanced the demand for fast and reliable simulation methods. The viability of electrochemistry coupled with mass spectrometry (EC/ESI-MS), Fenton-like oxidation, and UV irradiation for the simulation of oxidative phase I metabolism of the mycotoxins citrinin (CIT) and dihydroergocristine (DHEC) was investigated. The specific reaction products are compared with metabolites produced by human and rat liver microsomes in vitro. Depending on the applied potential between 0 and 2000 mV vs. Pd/H-2 by using a flow-through cell, CIT and DHEC are oxidized to various products. Besides dehydrogenation and dealkylation reactions, several hydroxylated DHEC and CIT species are produced by EC and Fenton-like reaction, separated and analyzed by LC-MS/MS and ESI-HRMS. Compared to reaction products from performed microsomal incubations, several mono- and dihydroxylated DHEC species were found to be similar to the reaction products of EC, Fenton-like reaction, and UV-induced oxidation. Consequentially, nonmicrosomal efficient and economic simulation techniques can be useful in early-stage metabolic studies, even if one-to-one simulation is not always feasible. KW - Mycotoxins KW - In vitro KW - Electrochemistry KW - Oxidation PY - 2017 DO - https://doi.org/10.1007/s00216-017-0350-6 SN - 1618-2642 VL - 409 IS - 16 SP - 4037 EP - 4045 PB - Springer CY - Heidelberg AN - OPUS4-40492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -