TY - JOUR A1 - Hübert, Thomas A1 - Schwarz, J. A1 - Oertel, B. T1 - Sol-gel alumina coatings on stainless steel for wear protection N2 - The aluminium oxide films on austenitic steel are prepared from sols of re-dispersed boehmite nano powders in water. After dip-coating of the sol, a heat treatment including drying, calcination and annealing in vacuum at temperatures up to 1100°C is performed to obtain crack-free coatings of a thickness up to 6 µm. XRD measurements detect α- and γ-alumina, a TiOx-phase at the metal/coating interface and a gradient of phase formation in the coating. The strong adhesion on the substrates is due to the layered assembly and gradient composition of the coating caused by an inter-diffusion of metal cations and oxygen in the metal/oxide interface during heat treatment. Residual stress measurements by X-rays result in compressive stresses of 2–4 GPa in the alumina coatings. The pin-on-disc test shows a remarkable improvement of wear resistance obtained by sol-gel coatings. The α-alumina content and the compressive stress of the coatings correlate with wear resistance of the coatings. KW - Alumina KW - Sol-gel KW - Coating KW - Wear protection KW - Residual stress PY - 2006 U6 - https://doi.org/10.1007/s10971-006-6470-7 SN - 0928-0707 SN - 1573-4846 VL - 38 IS - 2 SP - 179 EP - 184 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-12435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabir Mahr, Muhammad A1 - Hübert, Thomas A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Sabel, Martin A1 - Militz, H. T1 - Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites N2 - Sol–gel derived TiO2 and SiO2-wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites. KW - Wood KW - Sol-gel KW - Composite materials KW - Cone calorimeter KW - Fire retardance KW - Flammability PY - 2012 U6 - https://doi.org/10.1007/s10971-012-2877-5 SN - 0928-0707 SN - 1573-4846 VL - 64 IS - 2 SP - 452 EP - 464 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-27618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shimamura, Aki A1 - Hübert, Thomas A1 - Thust, H. T1 - Characterization of sol-gel derived glass composite thin films N2 - A comprehensive analysis of composition and structure is essential for the development of new materials with tailored properties. We will demonstrate the application of SEM, XPS and XRD for the development of thin films containing nano-scaled electrical conductive particles for application in hybrid resistors. The films were prepared using the sol-gel process and precursor solutions were synthesized from an acid hydrolysis of a mixture of TEOS, water and ethanol. Alcoholic solutions of ruthenium chloride were then allocated to obtain up to 30 vol% filler in the films. The films were precipitated by dip-coating on silicon, silica or glass sheets and heat treated at up to 600°C in air or nitrogen atmospheres. A nano-structured morphology could be identified consisting of homogeneously dispersed crystalline RuO2 particles of 10 to 180 nm in size, in an amorphous SiO2 matrix. Film morphology can be varied using the synthesis process. The resistivity of the films was measured by an I-V measurement system. It changes drastically from 109·cm to 10-2·cm according to the amount of dispersed conductive particles. The results show that composition-structure-property relations can be described by use of sophisticated analytical methods. T2 - 10th European Conference on Applications of Surface and Interface Analysis (ECASIA '03) CY - Berlin, Germany DA - 2003-10-05 KW - Sol-gel KW - Thin film KW - Nano-structure KW - Electrical resistivity KW - RuO2 PY - 2004 U6 - https://doi.org/10.1002/sia.1877 SN - 0142-2421 SN - 1096-9918 VL - 36 IS - 8 SP - 1207 EP - 1209 PB - Wiley CY - Chichester AN - OPUS4-4753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübert, Thomas A1 - Shimamura, Aki A1 - Klyszcz, Andreas T1 - Electrical Properties of Carbon Black and Ruthenium Dioxide Embedded Silica Films N2 - The electrical properties of sol–gel-derived films can be tailored by embedding conductive particles of ruthenium dioxide or carbon black in an insulating amorphous SiO2 silica matrix. The preparation process included an acid hydrolysis of tetraethoxysilane and methyltrimethoxysilane. Then alcohol solutions of ruthenium chloride or carbon black were added. Films of filler concentration up to 60 vol.% were prepared by dip coating and then dried and heat-treated at various temperatures up to 600_°C. The D.C. resistance of the films can be varied within the range of 109 to 10–2 OHgr sdot cm. A non-linear dependence on filler composition in the films was observed for both systems, which is explained by a modified percolation theory. A percolation threshold of 5.5 vol.% for SiO2-RuO2 or 50 vol.% for SiO2-C films, whereby the resistance drastically decreases, was determined. Moreover the temperature dependency of resistance and the current-voltage characteristics of the films can also be explained by this geometric model. KW - Sol-gel KW - Thin films KW - Carbon black KW - Ruthenium dioxide KW - Percolation phenomena PY - 2004 U6 - https://doi.org/10.1007/s10971-004-5777-5 SN - 0928-0707 SN - 1573-4846 VL - 32 SP - 131 EP - 135 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-6909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübert, Thomas A1 - Shimamura, Aki A1 - Klyszcz, Andreas T1 - Carbon-silica sol-gel derived nanomaterials N2 - The preparation of sol-gel derived silica-based nanomaterials containing electrical conductive carbon fillers in an extensive composition range is described and their electrical properties are presented. Nanomaterials of carbon filler concentrations up to 60% (v/v) were obtained by dip coating or screen-printing from precursors of hydrolysed alkoxysilanes. Nanostructured morphology could be identified to consist of homogeneously dispersed carbon black particles or carbon fibres of 30 to 500 nm in size in a modified silica matrix. The electrical resistivity of the films changes drastically from 1010 to 10?1 O?cm, according to the amount of dispersed conductive particles. A threshold between 5 and 50% (v/v), at which the resistance abruptly decreases, was determined. A geometrical model related to percolation theory explains this non-linear dependence on the filler composition in the materials. Moreover the temperature dependence of resistance and the current-voltage characteristics of the nanomaterials can also be illustrated using this geometric model. KW - Sol-gel KW - Nanomaterials KW - Carbon black KW - Electrical resitivity KW - Percolation PY - 2005 UR - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.3004&rep=rep1&type=pdf SN - 0137-1339 VL - 23 IS - 1 SP - 61 EP - 68 PB - Technical Univ. Press CY - Wroclaw AN - OPUS4-7362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübert, Thomas A1 - Hattermann, Hilke A1 - Griepentrog, Michael T1 - Sol-gel-derived nanocomposite coatings filled with inorganic fullerene-like WS2 N2 - Silica coatings filled with nanoscaled inorganic fullerene-like tungsten disulphide (IF-WS2) have been prepared through a sol–gel process on stainless steel substrates, and the structure and mechanical properties have been investigated. The precursor was prepared from a mixture of colloidal silica, 3-glycidoxypropyltrimethoxysilane (GLYMO), water and ethanol, adjusted to pH 4 with HNO3. In this solution WS2 is dispersed and in some cases immediately before coating ethylenediamine (ED) is added. The stainless steel substrates are dip-coated, dried in air and heat-treated in the temperature range of either 150–360 °C in air or up to 900 °C in vacuum. The solidification process is followed by differential thermal analysis (DTA). The resulting brown coloured coatings have a thickness of 1.5–4 µm. Scanning electron microscopy investigations (SEM) show that the WS2 nanoparticles are embedded as small aggregates in a hybrid silica matrix. X-ray diffraction (XRD) measurements prove that most of the tungsten disulphide embedded in the matrix can be protected against oxidation even after curing the samples at temperatures up to 900 °C. Hardness and modulus of the hybrid silica films were measured through an instrumented indentation test. Increasing the temperature of the heat treatment yields an increase of hardness from 0.3 to 1 GPa and of modulus from 3 to 17 GPa. The amount of up to 10 wt.% WS2 in the coatings has no remarkable influence on hardness and modulus of the samples. KW - Nanocomposites KW - Tungsten disulphide KW - Sol-gel KW - Mechanical properties PY - 2009 U6 - https://doi.org/10.1007/s10971-009-1896-3 SN - 0928-0707 SN - 1573-4846 VL - 51 IS - 3 SP - 295 EP - 300 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-19713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübert, Thomas A1 - Unger, Brita A1 - Bücker, Michael T1 - Sol-gel derived TiO2 wood composites N2 - The sol–gel process was applied to enhance properties of pine sapwood. For this purpose wood prisms were soaked in nanoscaled precursor solutions prepared from titanium(IV) n-butoxide and titanium(IV) iso-propoxide, respectively, using vacuum impregnation technique. The wet composites were cured by special program with final heat treatment at 103 °C. Weight percent gains (WPG) of the wood specimen in the range of 19-25% were obtained due to these procedures. SEM investigations show that precursor solutions penetrate into the whole wood body and the titania formed after heat treatment in the composites is deposited in the pores (lumen) and partly in the cell walls of the wooden matrix. The moisture sorption was investigated in long term tests for a period of some months by storage at 20-23 °C in humid air (relative humidity of 99%) and ambient atmosphere (relative humidity 40-60%), respectively. For untreated reference samples the moisture sorption results in increasing of mass and volume according to saturation values of 24 and 13%, respectively, after about 15 days. The incorporation of titania reduces the saturation values of the moisture sorption by up to 12% in mass and by up to 5% in volume at a relative humidity of 99%. Thus, an enhancement of the dimensional stability of about 60% is obtained at best. The results demonstrate that modification of wood with sol-gel derived precursors can enhance its dimensional stability, which prevents the formation of cracks. Because of that reduced moisture sorption biological attacks should be delimited. Additionally, thermal analyses show a retarded combustion of the wood matrix due to titania infiltration. KW - Titania KW - Sol-gel KW - Nanocomposites KW - Wood protection KW - Water sorption PY - 2010 U6 - https://doi.org/10.1007/s10971-009-2107-y SN - 0928-0707 SN - 1573-4846 VL - 53 IS - 2 SP - 384 EP - 389 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-20892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -