TY - JOUR A1 - Hönig, Gerald A1 - Westerkamp, S. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Shielding electrostatic fields in polar semiconductor nanostructures N2 - Polar semiconductor materials enable a variety of classic and quantum-light sources, which are optimized continuously. However, one key problem—the inherent electric crystal polarization of such materials—remains unsolved and deteriorates the radiative exciton decay rate. We suggest a sequence of reverse interfaces to compensate these polarization effects, while the polar, natural crystal growth direction is maintained. Former research approaches, like growth on less-polar crystal planes or even the stabilization of unnatural phases, never reached industrial maturity. In contrast, our concept provides a way for the development of ultrafast devices based on established growth processes for polar materials, while the electric potential landscape becomes adjustable. KW - Piezopolarisation KW - Spontane Polarisation KW - Halbleiterphysik KW - Nanophysik KW - Optoelektronik PY - 2017 DO - https://doi.org/10.1103/PhysRevApplied.7.024004 SN - 2331-7019 VL - 7 IS - 2 SP - 024004-1 EP - 024004-12 PB - American Physical Society CY - College Park, MD 20740-3844 AN - OPUS4-39125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hönig, Gerald A1 - Schlichting, S. T1 - QCSE tuning in polar GaN/AlN heterostructures N2 - We show both theoretically and experimentally how the encapsulation of the active region by additional guard layers can be used to achieve a significant reduction of the built-in electric fields in polar nitride heterostructures. This reduction of the QCSE results in a strongly enhanced emission intensity and faster recombination dynamics in the active region. In particular we are able to shift the emission energy of 4-nm-thick GaN nano-discs up to 3.32 eV, which is just 150 meV below the bulk GaN bandgap as compared to a red-shift of about 1 eV in a conventional heterostructure with the same thickness. T2 - SPIE. PHOTONICS WEST OPTO CY - San Francisco, CA, USA DA - 29.01.2018 KW - QCSE KW - Piezopolarization KW - Spontaneous Polarization KW - IFGARD KW - Nanoheterostructures KW - Nonpolar PY - 2018 AN - OPUS4-43383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlichting, S. A1 - Hönig, Gerald A1 - Müßener, J. A1 - Hille, P. A1 - Grieb, T. A1 - Westerkamp, S. A1 - Teubert, J. A1 - Schörmann, J. A1 - Wagner, M.R. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Suppression of the quantum-confined Stark effect in polar nitride heterostructures N2 - Recently, we suggested an unconventional approach (the so-called Internal-Field-Guarded-Active-Region Design “IFGARD”) for the elimination of the quantum-confined Stark effect in polar semiconductor heterostructures. The IFGARD-based suppression of the Stark redshift on the order of electronvolt and spatial charge carrier separation is independent of the specific polar semiconductor material or the related growth procedures. In this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the quantum-confined Stark effect in strongly polar [000-1] wurtzite GaN/AlN nanodiscs as evidenced by a reduction of the exciton lifetimes by up to four orders of magnitude. Furthermore, the tapered geometry of the utilized nanowires (which embed the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement and Stark emission energy shifts. Due to the IFGARD, both effects become independently adaptable. KW - Nanophotonics KW - Photonic devices KW - Single photon and quantum effects PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457884 DO - https://doi.org/10.1038/s42005-018-0044-1 SN - 2399-3650 VL - 1 SP - 1 EP - 8 PB - Springer Nature CY - London AN - OPUS4-45788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlichting, S. A1 - Hönig, Gerald T1 - Tuning of the quantum-confined Stark effect in wurtzite [0001] nanostructures by the internal-field-guarded-active-region design N2 - In this work we eliminate the QCSE without having any special requirements on the growth procedure or the material. Hönig et al. developed the Internal-Field-Guarded-Active-Region Design (IFGARD), which we experimentally investigate in this work based on GaN/AlN nanodiscs (NDs). T2 - Compound Semiconductor Week 2017 CY - Berlin, Germany DA - 14.05.2017 KW - Halbleiterphysik KW - Nanophysik KW - Optoelektronik KW - Piezopolarisation KW - Spontane Polarisation PY - 2017 AN - OPUS4-40174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Schlichting, S. A1 - Hönig, Gerald A1 - Müßener, J. A1 - Hille, P. A1 - Grieb, T. A1 - Teubert, J. A1 - Schörmann, J. A1 - Wagner, M. R. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Tuning of the Quantum-Confined Stark Effect in wurtzite [000-1] group-III-nitride nanostructures by the Internal-Field-Guarded-Active-Region Design N2 - Recently, we suggested an unconventional approach [the so-called Internal-Field-Guarded-Active-Region Design (IFGARD)] for the elimination of the crystal polarization field induced quantum confined Stark effect (QCSE) in polar semiconductor heterostructures. And in this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the QCSE in strongly polar [000-1] wurtzite GaN/AlN nanodiscs while reducing the exciton life times by more than two orders of magnitude. The IFGARD based elimination of the QCSE is independent of any specific crystal growth procedures. Furthermore, the cone-shaped geometry of the utilized nanowires (which embeds the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement- and QCSE-induced emission energy shifts. Due to the IFGARD, both effects become independently adaptable. KW - Piezoelectricity KW - Quantum Confined Stark Effect (QCSE) KW - Nanophotonics KW - Semiconductor nanostructures KW - Spontaneous polarization KW - Internal-Field-Guarded-Active-Region Design (IFGARD) PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-411013 DO - https://doi.org/10.48550/arXiv.1707.06882 SN - 2331-8422 SP - 1 EP - 9 PB - Cornell University CY - Ithaca, NY AN - OPUS4-41101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, M. R. A1 - Schlichting, S. A1 - Müßener, J. A1 - Hille, P. A1 - Teubert, J. A1 - Schörmann, J. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. A1 - Hönig, Gerald T1 - Suppression of the quantum confined Stark effect in polar III-nitride heterostructures N2 - One of the most significant limitations for the quantum efficiency of group III-nitride based light emitters is the spatial electron-hole separation due to the quantum-confined Stark effect (QCSE). To overcome this problem, Hönig et al. [1] proposed a novel concept, the Internal-Field-Guarded-Active-Region Design (IFGARD), which suppresses the QCSE for wurtzite crystals in the [0001] direction. Here, we show how encapsulating the active region by additional guard layers results in a strong reduction of the built-in electric field in c-plane wurtzite nanostructures. Even more importantly, we demonstrate the first experimental evidence for the successful realization of an IFGARD structure based on GaN/AlN heterostructures embedded in GaN nanowires. By means of power-dependent and time-resolved µ-photoluminescence (µ-PL) we experimentally proof the validity of the unconventional IFGARD structure. We managed to tune the emission of 4-nm-thick GaN nano-discs up to 3.32 eV at low excitation powers, which is just 150 meV below the bulk GaN bandgap. Our results demonstrate an almost complete elimination of the QCSE in comparison to conventional structures which show approximately 1 eV red-shifted emission. The suppression of the QCSE results in a significant increase of the radiative exciton decay rates by orders of magnitude and demonstrates the potential of IFGARD structures for future light sources based on polar heterostructures. [1] Hönig et al., Phys. Rev. Applied 7, 024004 (2017) T2 - International Conference on Nitride Semiconductors 12 of the European Materials Research Society CY - Strasbourg, France DA - 24.07.2017 KW - Nanophotonics KW - Piezoelectricity KW - Quantum confined stark effect KW - Semiconductor nanostructures KW - Spontaneous polarization PY - 2017 AN - OPUS4-41194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shapovalov, Oleg A1 - Gaal, Mate A1 - Hönig, Gerald A1 - Gradt, Thomas A1 - Weiss, S. T1 - Temperature dependence of the propagation speed of a longitudinal wave in different solids for use as a wedge material in an extreme-temperature-resistant ultrasonic transducer N2 - In special cases of angle beam ultrasonic measurement – e.g. defect detection in hot solids as well as flow measurement of liquid gases or energy storage mediums – the applied transducer has to withstand extreme temperatures. Since the irradiation angle into the specific material is determined not only by wedge design, but also by the speed of sound in both the wedge material and the tested object, the developer must take into account the speed of the wave propagation in a wedge material over the whole temperature range of transducers application. In this study we investigate the temperature dependence of the speed of longitudinal wave propagation in 10 different materials in the range from -200 °C to 400 °C. The investigated materials belong to different material classes (ceramics, glass, as well as ferrous and non-ferrous metals) and are all temperature-resistant up to at least 600 °C, and therefore applicable as wedge materials in an ultrasonic transducer for use at extreme temperatures. T2 - 23rd International Congress on Acoustics CY - Aachen, Germany DA - 09.09.2019 KW - Ultrasonic Transducer KW - Speed of sound KW - Longitudinal Wave KW - Temperature PY - 2019 SP - 4776 EP - 4782 AN - OPUS4-48980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -