TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Höhne, Christian A1 - Prager, Jens A1 - Rethmeier, Michael A1 - Kreutzbruck, Marc T1 - Quantitative evaluation of ultrasonic C-scan image in acoustically homogeneous and layered anisotropic materials using three dimensional ray tracing method JF - Ultrasonics N2 - Quantitative evaluation of ultrasonic C-scan images in homogeneous and layered anisotropic austenitic materials is of general importance for understanding the influence of anisotropy on wave fields during ultrasonic non-destructive testing and evaluation of these materials. In this contribution, a three dimensional ray tracing method is presented for evaluating ultrasonic C-scan images quantitatively in general homogeneous and layered anisotropic austenitic materials. The directivity of the ultrasonic ray source in general homogeneous columnar grained anisotropic austenitic steel material (including layback orientation) is obtained in three dimensions based on Lamb's reciprocity theorem. As a prerequisite for ray tracing model, the problem of ultrasonic ray energy reflection and transmission coefficients at an interface between (a) isotropic base material and anisotropic austenitic weld material (including layback orientation), (b) two adjacent anisotropic weld metals and (c) anisotropic weld metal and isotropic base material is solved in three dimensions. The influence of columnar grain orientation and layback orientation on ultrasonic C-scan image is quantitatively analyzed in the context of ultrasonic testing of homogeneous and layered austenitic steel materials. The presented quantitative results provide valuable information during ultrasonic characterization of homogeneous and layered anisotropic austenitic steel materials. KW - Ultrasonic non-destructive evaluation KW - Ultrasonic C-scan image KW - Anisotropic austenitic steel KW - 3D ray tracing KW - Directivity PY - 2014 DO - https://doi.org/10.1016/j.ultras.2013.08.007 SN - 0041-624x VL - 54 IS - 2 SP - 551 EP - 562 PB - Elsevier CY - Amsterdam AN - OPUS4-29733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -