TY - JOUR A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Häusler, Ines A1 - Stewart, M. T1 - Ga+ implantation in a PZT film during focused ion beam micro-machining N2 - The objective of the present work was to study the impact of Focused Ion Beam (FIB) machining parameters on the thickness of the damaged layer within a thin film PZT. Therefore, different Ga+- ion doses and ion energies were applied to a standard PZT film (80/20 lead zirconium titanate) under two beam incidence angles (90° and 1°). The thicknesses of the corresponding Ga+-implanted layers were then determined by cross-sectional TEM in combination with energy dispersive spectroscopic (EDS) line-scans and correlated with polarisation hysteresis loops. The results show a decrease of Ga+-implanted layer thickness with decreasing inclination angle, whereas ion energy and ion dose could be correlated with gallium concentration in the implanted layers.. Under the most unfavorable conditions the depth of the affected zone was 26 nm, it was only 2 nm for the most favorable conditions. KW - PZT KW - Focused ion beam KW - Gallium implantation KW - Polarisation-electric field loop PY - 2015 DO - https://doi.org/10.1002/pssc.201400096 SN - 1610-1634 SN - 1862-6351 SN - 1610-1642 VL - 12 IS - 3 SP - 314 EP - 317 PB - Wiley-VCH CY - Berlin AN - OPUS4-32872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Hammouri, Basem A1 - Morales Guzman, Pablo Israel A1 - Wetzel, B. A1 - Yigit, D. A1 - Zhang, G. T1 - Exploring the beneficial role of tribofilms formed from an epoxy-based hybrid nanocomposite N2 - The composition and nanostructure of a beneficial tribofilm formed during sliding of a hybrid nanocomposite against steel were characterized comprehensively. A similar nanostructure was produced by high energy ball milling of the three identified tribofilm constituents: silica, hematite and graphite. By supplying powders to a pin-on-disc test it has been shown that neither silica, nor hematite, nor a mixture of both provide the low coefficient of friction (COF) observed for the hybrid composite. Only if graphite was blended with the oxides, the low COF was obtained. Thus, a film of finely dispersed stable inorganic wear products containing 15 vol% graphite provides low friction and wear in the considered case. KW - TEM KW - Nanocomposite KW - Tribofilm KW - Ball milling KW - Pin-on-disc test PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.03.006 SN - 0301-679X VL - 88 SP - 126 EP - 134 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Giovannozzi, A. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Rossi, A. A1 - Wetzel, B. A1 - Zhang, G. A1 - Dmitriev, A.I. T1 - Exploring the potential of Raman spectroscopy for the identification of silicone oil residue and wear scar characterization for the assessment of tribofilm functionality N2 - We applied a combination of Raman spectroscopy (RS) and cross-sectional transmission electron microscopy (X-TEM) to identify silicone oil residues and tribofilms at steel disc surfaces after tribological testing. Neither chemical cleaning nor mechanical removal of a 50 µm thick surface layer produced a surface without any silicone residue. Nevertheless, long-term tribological properties are not affected due to silicone degradation which has been proved by Raman spectroscopy. Excellent anti-wear and anti-friction properties of a nanocomposite at severe stressing conditions correlated with the formation of a silica-based tribofilm containing amorphous and graphite-like carbon nanoparticles. Since reliable carbon quantification by analytical TEM is difficult, RS is a useful complementary method for carbon identification at wear scars. KW - Raman spectroscopy KW - Cross-sectional TEM KW - Silicone oil residue KW - Tribofilm PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.04.046 SN - 0301-679X VL - 90 SP - 481 EP - 490 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Häusler, Ines A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Palasse, L. A1 - Dirscherl, K. T1 - Characterization of porous, TiO2 nanoparticle films using on-axis TKD in SEM – a new nano-analysis tool for a large-scale application N2 - A combined methodical approach is tested with respect to the characterization of the inner structure of porous TiO2 layers as typically used in modern dye sensitized solar cells (DSSC). Their performance is directly linked to the surface area of the pore network. The micrometer thick layer employed was manufactured by screen-printing of a starting TiO2 powder constituted of shape-controlled, bipyramidal anatase nanoparticles on FTO/glass substrates. The analytical methods exploited in our study are Focused Ion Beam (FIB) slicing followed by 3D reconstruction as well as the new approach transmission Kikuchi diffraction (TKD) technology in the scanning electron microscope (SEM). Size and shape distribution of the TiO2 NPs within the layer can be extracted. SEM in transmission mode and atomic force microscopy (AFM) have been used to verify the dimensional data obtained by the new combined methodical approach. Its analytical benefits but also the challenges and limitations are highlighted. KW - TiO2 KW - TKD KW - Particle size distribution KW - Nanoparticles KW - Porous film PY - 2017 UR - https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8A8B29335A2F4D0CB6922F6F5A19C5DC/S1431927617003397a.pdf/characterization_of_porous_tio2_nanoparticle_films_using_onaxis_tkd_in_sem_a_new_nanoanalysis_tool_for_a_largescale_application.pdf DO - https://doi.org/10.1017/S1431927617003397 VL - 23 IS - S1 (July) SP - 542 EP - 543 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-41924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471207 DO - https://doi.org/10.3390/ma12010030 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines T1 - Volume fraction determination of discretely oriented disc-shaped precipitates in transmission mode T1 - Bestimmung des Volumenanteils von diskret orientierten kreisscheibenförmigen Ausscheidungen im Transmissionsmodus N2 - In der vorliegenden Arbeit wurde eine Formel zur Berechnung des Volumenantei ls dis­ kret orientierter scheibenförmiger Phasen für die Untersuchung im Transmissionsmodus hergeleitet, validiert und mit bereits veröffent­ lichen Formeln verglichen. Bei diesem Ver­ gleich konnte gezeigt werden,dass die in zahl­ reichen Veröffentlichungen benutzte Formel von E. E. Underwood für die Volumenanteils­ bestimmungbeidiskret orientierten Ausschei­ dungsphasen nicht benutzt werden sollte, da sie den Volumenanteil deutlich unterschätzt. Die Ursache liegt in der von E.E. Underwood getroffenen Annahme, dass die kreisförmigen Scheiben regellos angeordnet und nicht aus­ gerichtet sind, was in Al-Legierungen in der Regel nicht der Fall ist. KW - Material KW - TEM KW - Volumenbruchteil KW - Al-Cu-Li-Legierung KW - Ausscheidungen PY - 2017 DO - https://doi.org/10.3139/147.110471 SN - 0032-678X SN - 2195-8599 VL - 54 IS - 12 SP - 816 EP - 837 PB - Carl Hanser AN - OPUS4-43722 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grulke, E. A. A1 - Yamamoto, K. A1 - Kumagai, K. A1 - Häusler, Ines A1 - Österle, Werner A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Brown, S. C. A1 - Chan, C. A1 - Zheng, J. A1 - Yamamoto, K. A1 - Yashiki, K. A1 - Song, N. W. A1 - Kim, Y. H. A1 - Stefaniak, A. B. A1 - Schwegler-Berry, D. A1 - Coleman, V. A. A1 - Jämting, Å. K. A1 - Herrmann, J. A1 - Arakawa, T. A1 - Burchett, W. W. A1 - Lambert, J. W. A1 - Stromberg, A. J. T1 - Size and shape distributions of primary crystallites in titania aggregates N2 - The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions were multi-modal but data visualization plots demonstrated that the Weibull distribution was preferred to the normal distribution. For the equivalent circular diameter size descriptor, measurement uncertainties of the lognormal distribution scale and width parameters were 9.5% and 22%, respectively. For the aspect ratio shape descriptor, the measurement uncertainties of the Weibull distribution scale and width parameters were 7.0% and 26%, respectively. Both measurement uncertainty estimates and data visualizations should be used to analyze size and shape distributions of particles on the nanoscale. KW - Measurement uncertainty KW - Size distribution KW - Shape distribution KW - TEM KW - Titania PY - 2017 DO - https://doi.org/10.1016/j.apt.2017.03.027 SN - 0921-8831 VL - 28 IS - 7 SP - 1647 EP - 1659 PB - Elsevier B.V. AN - OPUS4-40478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Häusler, Ines A1 - Wetzel, B. A1 - Zhang, G. A1 - Österle, Werner T1 - Modeling of the stress-strain behavior of an epoxy-based nanocomposite filled with silica nanoparticles N2 - The method of movable cellular automata (MCA) was applied to simulate the stress-strain behavior of a nano composite consisting of an epoxy matrix and 6 vol. % silica nano particles. The size of the elements used for modelling was fixed at 10 nm, corresponding approximately to the diameter of the filler particles. Since not only the stress-strain response of the two constituents but also debonding of neighboring particles and granular flow was taken into account, plastic deformation as well as crack initiation and propagation could be simulated with the model. Modelling results were compared with tensile test results of both, pure epoxy as well as the epoxy-6 vol. % SiO2 composite. Since assuming bulk properties of the two constituents did not yield satisfactory results, slight modifications of the nanoparticle response functions and nanostructures were tested numerically. Finally, it was observed that only the assumption of slightly increased strength properties of the epoxy yielded good correlation between experimental and modelling results. This was attributed to an increased cross linking of the epoxy caused by the presence of silica nano particles. KW - Nanocomposite KW - Polymer matrix composite KW - Stress-strain behavior KW - Modeling KW - Computational mechanics PY - 2016 DO - https://doi.org/http://dx.doi.org/10.1016/j.matdes.2015.10.038 SN - 0264-1275 VL - 89 SP - 950 EP - 956 PB - Elsevier AN - OPUS4-35596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A. I. A1 - Wetzel, B. A1 - Zhang, G. A1 - Häusler, Ines A1 - Jim, B.C. T1 - The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite N2 - Excellent tribological properties of an advanced polymer matrix composite were obtained by a combination of micro- and nano-sized fillers. Surface features and the nanostructure of tribofilms were characterized by advanced microscopic techniques, and correlated with the macroscopic behavior in terms of wear rate and friction evolution. A model based on movable cellular automata was applied for obtaining a better understanding of the sliding behavior of the nanostructured tribofilms. The failure of the conventional composite without silica nanoparticles could be attributed to severe oxidational wear after degradation of an initially formed polymer transfer film. The hybrid composite preserves its antiwear and antifriction properties because flash temperatures at micron-sized carbon fibers, lead to polymer degradation and subsequent release of nanoparticles. It has been shown that the released particles are mixed with other wear products and form stable films at the disc surface thus preventing further severe oxidational wear. Furthermore, the released wear product also is embedding carbon fibers at the composite surface thus preventing fiber fragmentation and subsequent third body abrasion. With nanoscale modelling we were able to show that low friction and wear can be expected if the nanostructured silica films contain at least 10 vol.% of a soft ingredient. KW - Carbon fibers KW - Silica nanoparticles KW - Hybrid composite KW - Tribological properties KW - Tribofilm KW - Sliding simulation PY - 2016 DO - https://doi.org/10.1016/j.matdes.2015.12.175 SN - 0264-1275 VL - 93 SP - 474 EP - 484 PB - Elsevier AN - OPUS4-35598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Moeck, P. A1 - Volz, K. A1 - Neumann, W. T1 - Atomically ordered (Mn,Ga) As crystallites on and within GaAs N2 - Metal organic vapor phase epitaxy (MOVPE) of Mn-rich (Mn,Ga)As on (001) oriented GaAs wafers resulted in atomically ordered (Mn,Ga)As crystallites of two morphological kinds, partially embedded on the wafer surface and fully embedded within the single crystalline matrix. While the former were apparently free of defects (other than unavoidable point defects), the latter contained two domains separated by a grain boundary. Since atomic ordering can be modeled by space group symmetry descent considerations (Bärnighausen trees) that start with the space group of the known crystallographic phases of random (Mn,Ga)As alloys with specified chemical compositions, reasonable structure hypotheses have been derived for two atomically ordered Mn0.75Ga0.25As phases that we call the trigonal α' and the monoclinic β' phases. The implications of these structure hypotheses are in agreement with the results of a range of scanning transmission electron microscopy (STEM) and parallel illumination electron diffraction (ED) studies that include quantitative energy dispersive X-ray spectroscopy, X-ray spectroscopic imaging, as well nanobeam diffraction and high angle precession ED. The coexistence of two domains within the fully embedded crystallites is predicted by the corresponding Bärnighausen tree and observed experimentally for the fully embedded crystallites. KW - (Mn,Ga) As crystallites KW - Bärninghausen symmetry trees KW - Precession electron diffraction KW - Scanning nanobeam mapping KW - STEM/TEM imaging PY - 2015 DO - https://doi.org/10.1002/crat.201500310 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 50 IS - 12 SP - 967 EP - 973 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-35125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Österle, Werner A1 - Jim, B. A1 - Häusler, Ines A1 - Hesse, Rene A1 - Wetzel, B. T1 - The role of surface topography in the evolving microstructure and functionality of tribofilms of an epoxy-based nanocomposite N2 - The topographic effect of steel counterface, finished by mechanical grinding with Ra ranging from 0.01 to 0.95 µm, on the structure and functionality of the tribofilm of a hybrid nanocomposite, i.e. epoxy matrix filled with monodisperse silica nanoparticles, carbon fibers and graphite, was systematically investigated. The nanostructure of the tribofilm was comprehensively characterized by using combined focused ion beam and transmission electron microscope analyses. It was identified that oxidation of the steel surface, release, compaction and tribosintering of silica nanoparticles and deposition of an epoxy-like degradation product as well as fragmentation of carbon fibers are main mechanisms determining the structure and functionality of the tribofilm. The size of roughness grooves determines the type and size class of wear particles to be trapped at the surface. An optimum groove size leading to a maximum of surface coverage with a nanostructured tribofilm formed mainly from released silica nanoparticles was identified. KW - hybrid nanocomposite KW - tribological performance KW - topographic effect KW - tribofilm KW - nanostructure PY - 2016 DO - https://doi.org/10.1016/j.wear.2016.06.012 VL - 364-365 SP - 48 EP - 56 PB - Elsevier B.V. AN - OPUS4-37937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, F. A1 - Li, G. A1 - Österle, Werner A1 - Häusler, Ines A1 - Zhang, G. A1 - Wang, T. A1 - Wang, Q. T1 - Tribological investigations of glass fiber reinforced epoxy composites under oil lubrication conditions N2 - The tribological performance of short glass fibers (SGF),solid lubricants and silica nanoparticles filled epoxy (EP) composites was investigated under oil lubrication conditions. It is demonstrated that the addition of SGF greatly reduces the friction and wear of EP. However, further addition of solid lubricants and silica nanoparticles does not change obviously the friction and wear. It is identified that the high tribological performance of SGF reinforced EP is related to the high load carrying capacity and abrasion resistance of SGF. The nanostructure of the tribofilm was comprehensively characterized. It is deemed that the tribofilm plays an important role in the tribological performance by avoiding the direct rubbing of the sliding pairs exposed to boundary and mixed lubrication conditions. KW - Reinforced epoxy composites KW - Short glass fiber KW - Oil lubrication KW - Tribofilm PY - 2016 DO - https://doi.org/10.1016/j.triboint.2016.07.002 SN - 0301-679X VL - 103 SP - 208 EP - 217 PB - Elsevier Ltd. AN - OPUS4-38145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Moeck, P. A1 - Volz, K. A1 - Neumann, W. T1 - Orientation relationships of Mn0.75Ga0.25As crystallites on and within GaAs determined by scanning nano beam electron diffraction N2 - Mn0.75Ga0.25As crystallites, partially embedded on and fully embedded within a single crystalline matrix of GaAs formed during metal organic vapor phase epitaxy (MOVPE) of Mn-rich (Mn,Ga)As on (001) oriented GaAs wafers. Phase and orientation analysis of these crystallites were performed with scanning nano beam electron diffraction (SNBED). The investigation of plan-view specimens using a liquid nitrogen cooling stage enabled the phase and orientation analysis of partially embedded ferromagnetic a-phase particles. In all specimens the following two orientation relationships (O) between the a-phase particles and the GaAs matrix were determined: O1: [1-2.0] Mn0.75Ga0.25As || [110] GaAs and [10.2] Mn0.75Ga0.25As || [-110] GaAs O2: [10.2] Mn0.75Ga0.25As || [110] GaAs and [1-2.0] Mn0.75Ga0.25As || [-110] GaAs. The study of cross-sectional specimens enabled the analysis of fully embedded crystallites. It could be unambiguously detected that a fully embedded crystallite has the structure of the atomically ordered monoclinic β' phase. The β' phase crystallite consists of two domains which are related in twin positions to each other. The orientation relations of the different particles are illustrated by color coded stereographic projections. KW - (Mn,Ga)As crystallites KW - Scanning nano beam electron diffraction KW - Crystal phase determination KW - Orientation mapping KW - STEM/TEM imaging PY - 2017 DO - https://doi.org/10.1002/crat.201600261 SN - 1521-4079 SN - 0232-1300 VL - 52 IS - 1, Special Issue: Anniversary Issue: 50 Years of Crystal Research & Technology SP - 138 EP - 145 PB - Wiley AN - OPUS4-38939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Schwarze, C. A1 - Umer Bilal, M. A1 - Valencia Ramirez, D. A1 - Hetaba, W. A1 - Darvishi Kamachali, Reza A1 - Skrotzki, Birgit T1 - Precipitation of T1 and theta′ Phase in Al‐4Cu‐1Li‐0.25Mn During Age Hardening: Microstructural Investigation and Phase‐Field Simulation N2 - Experimental and phase field studies of age hardening response of a high purity Al‐4Cu‐1Li‐0.25Mn‐alloy (mass %) during isothermal aging are conducted. In the experiments, two hardening phases are identified: the tetragonal θ′ (Al₂Cu) phase and the hexagonal T1 (Al₂CuLi) phase. Both are plate shaped and of nm size. They are analyzed with respect to the development of their size, number density and volume fraction during aging by applying different analysis techniques in TEM in combination with quantitative microstructural analysis. 3D phase‐field simulations of formation and growth of θ′ phase are performed in which the full interfacial, chemical and elastic energy contributions are taken into account. 2D simulations of T1 phase are also investigated using multi‐component diffusion without elasticity. This is a first step toward a complex phase‐field study of T1 phase in the ternary alloy. The comparison between experimental and simulated data shows similar trends. The still unsaturated volume fraction indicates that the precipitates are in the growth stage and that the coarsening/ripening stage has not yet been reached. KW - Al‐Cu‐Li‐alloy KW - Precipitates KW - Age hardening KW - Volume fraction KW - Number density KW - Microstructure KW - Phase‐field modeling KW - Elasticity KW - Multi‐component diffusion KW - Growth kinetics PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390473 DO - https://doi.org/10.3390/ma10020117 SN - 1996-1944 VL - 10 IS - 2 SP - Article 117, 1 EP - 21 PB - MDPI CY - Basel, Schweiz AN - OPUS4-39047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Palasse, L. A1 - Häusler, Ines A1 - Dirscherl, K. A1 - Oswald, F. A1 - Narbey, S. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan T1 - Characterization of the inner structure of porous TiO2 nanoparticle films in dye sensitive solar cells (DSSC) by focused ion beam (FIB) tomography and transmission Kikuchi diffraction (TKD) in the scanning electron microscope (SEM) N2 - A combined methodical approach is tested for the first time with respect to the characterization of the inner structure of porous TiO2 layers infiltrated with ruthenium molecular sensitizer as typically used in modern dye sensitized solar cells (DSSC). Their performance is directly linked to the surface area ‘offered’ by the pore Network to the dye. The micrometer thick layer employed was manufactured by screen-printing of a starting TiO2 powder constituted of shape-controlled, bipyramidal anatase nanoparticles (NPs) on FTO/glass substrates. The analytical methods exploited in our study are Focused Ion Beam (FIB) slicing followed by 3D reconstruction as well as the new approach transmission Kikuchi diffraction (TKD) technology in the scanning electron microscope (SEM). While the first method results in the visualization of the 3D pore network within the TiO2 layer, the second one can be successfully applied to analyze the crystal orientation of grains (i.e. NPs in our case) in nanometer resolution. Moreover, size and shape distribution of the TiO2 NPs within the layer can be extracted. SEM in transmission mode and atomic force microscopy (AFM) have been used to verify the dimensional data obtained by the new combined methodical approach. Its analytical benefits but also the challenges and limitations are highlighted. KW - Transmission Kikuchi diffraction KW - Focused ion beam tomography KW - Titanium dioxide KW - Nanoparticles KW - Porosity KW - Particle size KW - DSSC PY - 2017 DO - https://doi.org/10.1016/j.matchar.2017.06.030 SN - 1044-5803 SN - 1873-4189 VL - 131 SP - 39 EP - 48 PB - Elsevier AN - OPUS4-40875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Häusler, Ines T1 - Evolution of strengthening phases under in-service stresses and temperatures: phase-field and experimental study T2 - 2015 plenary meeting DFG Priority Programme 1713 "Strong coupling of thermo-chemical and thermo-mechanical states in applied materials" CY - Ruhr-Universität Bochum DA - 2015-11-04 PY - 2015 AN - OPUS4-34952 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Deutsch, Cornelius A1 - Dörfel, Ilona A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Orts-Gil, G. A1 - Prietzel, C. A1 - Schneider, Thomas T1 - Final outcome of a fundamental research project on tribofilms formed during automotive braking, Part 1: Experimental studies N2 - In order to obtain a better understanding of the role of tribofilms during automotive braking, their structures were investigated and the essential features identified. Next, different ingredient combinations were studied by preparing some model materials with simpler compositions than real tribofilms. A test method was developed for verifying the tribological properties of the model materials and for comparison with results obtained with numerical sliding simulations of such structures. Prerequisites of good brake Performance properties were identified. Although the coefficient of friction could be varied in a wide ränge, smooth sliding conditions could only be achieved with values smaller than 0.4. Tests with artificial third body powders turned out to be useful as screening method for the selection of raw materials for brake pad formulations. T2 - EuroBrake 2014 CY - Lille, France DA - 13.05.2014 KW - Tribofilm KW - Third body KW - Pad ingredients KW - Ball milling KW - Pin-on-disc test PY - 2014 SN - 978-0-9572076-4-6 SP - 1 EP - 8 PB - FISITA CY - London AN - OPUS4-35039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Häusler, Ines A1 - Österle, Werner A1 - Wetzel, B. A1 - Jim, B. T1 - Formation and function mechanisms of nanostructured tribofilms of epoxy-based hybrid nanocomposites N2 - The nanostructures and properties of the tribofilms of epoxy (EP) composites filled with short carbon fibers (SCF) and different volume fractions of monodisperse silica nanoparticles were investigated. When the conventional composite filled only with SCF was considered under a high pv condition, an iron oxide layer is formed on the steel counterface. The addition of even only 0.05 vol% nano-silica leads to a significant change of the tribofilm's structure and the tribological behavior of the composite. With increasing silica content, the oxidation layer on the steel surface is gradually replaced by a silica-based tribofilm. A close relationship between the tribofilms’ structure and the tribological behavior of the composites was identified. Mixing, possible reactions and tribo-sintering of silica nanoparticles with other wear products are deemed to be main mechanisms inducing the formation and the lubricity of the silica-based tribofilm. KW - Polymer-matrix composite KW - Sliding wear KW - Tribofilm KW - Nanoparticles KW - Tribo-sintering PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.08.025 SN - 0043-1648 VL - 342-343 SP - 181 EP - 188 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Häusler, Ines A1 - Österle, Werner A1 - Narbey, S. A1 - Oswald, F. A1 - Andersen, I. H. A1 - Holzweber, Markus A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan T1 - In-depth structural and chemical characterization of engineered TiO2 films N2 - Analytical routines for a comprehensive in-depth morphological, structural, and chemical characterization of functionalized TiO2 films by using different state-of-the-art analytical techniques are presented and discussed with the main objective to identify potential reference TiO2 coating parameters able to be certified at a later stage. TiO2 films fabricated by two different synthetic procedures as representative for two main large-scale applications were selected: (i) pulsed d.c. magnetron sputtering for photocatalytic applications and (ii) screen printing from preformed anatase nanoparticles. The screen-printed films were further loaded with a sensitizing dye for application as a dye-sensitized solar cell. Film properties such as microstructure and crystallographic texture of pulsed d.c. magnetron sputtering synthesized films were systematically studied by means of scanning nanobeam electron diffraction in a transmission electron microscope and the surface and inner morphology by scanning electron microscopy. The dye distribution over the depth of screen-printed TiO2 layers was analyzed before and after dye-loading by means of energy dispersive X-ray spectroscopy at scanning electronmicroscope, Auger electron spectroscopy and time-of-flight secondary ion mass spectrometry. The long-term goal of the present study is the improvement of quality of the TiO2 film parameters as measured by using different types of reference TiO2 coatings having specific parameters certified. T2 - 16th European Conference on Applications of Surface and Interface Analysis ECASIA'15 CY - Granada, Spain DA - 28.09.2015 KW - Mapping KW - Line scan KW - Depth profiling KW - TiO2 films KW - Crystallinity KW - Ru dye sensitizer PY - 2016 DO - https://doi.org/10.1002/sia.5966 SN - 0142-2421 SN - 1096-9918 VL - 48 SP - 664 EP - 669 PB - John Wiley & Sons, Ltd. AN - OPUS4-36791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Tasdemir, Z. A1 - Häusler, Ines A1 - Leblebici, Y. A1 - Österle, Werner A1 - Alaca, B. E. T1 - Determination of the elastic behavior of silicon nanowires within a scanning electron microscope N2 - Three-point bending tests were performed on double-anchored, <110> silicon nanowire samples inside a scanning electron microscope (SEM) via a micromanipulator equipped with a piezo-resistive force sensor. Representing the upper and lower boundaries achievable in a consistent manner, silicon nanowires with widths of 35 nm and 74 nm and a height of 168 nm were fabricated. The nanowires were obtained monolithically along with their 10-m-tall supports through a top-down fabrication approach involving a series of etching processes. Hence, no interface compliance was introduced between supports and nanowires. Exact nanowire dimensions and cross-sectional features were determined by transmission electron microscopy (TEM) following sample preparation through focused ion beam (FIB) machining. Conducting the experiments inside an SEM chamber further raised the opportunity of the direct observation of any deviation from ideal loading conditions such as twisting, which was taken into consideration in simulations. Measured force-displacement behavior was observed to exhibit close resemblance to simulation results obtained by finite element modeling, when the bulk value of 169 GPa was taken as the modulus of elasticity for <110> silicon. Hence, test results show neither any size effect nor evidence of residual stresses for the considered nanoscale objects. The increased effect of the native oxide with reduced nanowire dimensions was captured as well. Thus this very simple in-situ testing method was found to be an alternative to elaborate AFM measurements on geometrically formidable nanostructures. The results demonstrate the applicability of the developed fabrication approach to the incorporation of silicon nanowires in functional micromechanical devices. KW - Silicon nanowire KW - Elastic behavior KW - Scanning electron microscope KW - Mechanical properties PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370383 DO - https://doi.org/10.1155/2016/4905838 VL - 2016 SP - Article 4905838, 1 EP - 6 PB - Hindawi Publishing Corporation AN - OPUS4-37038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Österle, Werner T1 - Comprehensive characterization of ball-milled powders simulating a tribofilm system N2 - A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS2 and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. KW - Tribofilm model system KW - Ball milling KW - X-ray powder diffraction KW - Transmission electron microscopy PY - 2016 DO - https://doi.org/10.1016/j.matchar.2015.11.024 SN - 1044-5803 SN - 1873-4189 VL - 111 SP - 183 EP - 192 PB - Elsevier CY - New York, NY AN - OPUS4-35051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Häusler, Ines T1 - Effect of heat treatment and uniaxial stress on the microstructure of an Al-Cu-Li alloy N2 - TEM Untersuchungen der T1- und der Theta'-Phasen in einer Al-4Cu-1Li-0.25Mn Legierung in Abhängigkeit von thermischen und mechanischen Belastungen. T2 - The 15th International Conference on Aluminum Alloys (ICAA15) CY - Chongqing, China DA - 12.06.2016 KW - Al-Cu-Li Legierung KW - Transmissionselektronenmikroskopie KW - Kriechversuche KW - Thermische Alterung PY - 2016 AN - OPUS4-36974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -