TY - CONF A1 - Fürst, Richard A1 - Häßler, Dustin A1 - Peter, A. A1 - Rohleder, R. A1 - Hothan, Sascha T1 - European test standard intumescent coatings applied to steel tension bars with solid section T2 - 8th Symposium Structural Fire Engineering N2 - Intumescent coatings are used in civil engineering to improve the fire resistance of steel constructions. Due to the thin coating thickness and the profile-following application, the architectural appearance of the steel structure can be preserved. EN 13381-8 provides regulations to determine the contribution to the fire resistance of intumescent coatings applied to steel beams and columns. The scope of this standard excludes tension members and steel members with solid sections. For products that have already been successfully tested and assessed on beams and columns, EN 13381-10 offers the possibility based on unloaded fire tests to extend the scope of application of intumescent coatings to tension bars with solid sections. This approach contradicts the national safety level in Germany, where mechanically loaded testing is mandatory. Therefore, a new part of the test standard series EN 13381 is currently developed to enable the application of intumescent coatings on steel tension bars with solid section based on mechanically loaded fire tests. BAM has already carried out numerous fire tests on loaded steel tension members with intumescent coatings. Currently, in the BAM research project FIRESTEMIC, the influence of the steel bar orientation and the profile type on the thermal performance of intumescent coatings are investigated. Both questions concerning the thermal protection ability of intumescent coatings were analysed based on three different test sets, which were carried out in the tension furnace (Fig. 1a). The fire exposure corresponds to the standard temperature-time curve according to EN 1363-1. This paper summarises the main findings from the fire tests conducted in the FIRESTEMIC project. The results serve as an experimental background for the proposal of the new standard. Regarding the bar orientation, a new test setup was developed and proposed for the new standard. The two tested commercial water-based intumescent coatings with applied dry film thickness from 1.5 mm to 2.5 mm showed only a slight dependence on the bar orientation. In terms of the steel profile type, circular and rectangular solid sections with identical section factor and applied dry film thickness were tested. It was observed that the circular solid bars with diameter 30 mm heat up faster compared to the solid rectangular bars with dimension 30×30 mm (Fig. 1b). Also at larger steel bars, i.e. diameter 40 mm and dimension 40×40 mm, the same trend occurred. Thus, it is recommended for the new test standard to allow a transfer of the test results from circular to rectangular solid sections. In addition, the paper will describe and explain the test and assessment procedure proposed for the newly developed standard. T2 - 8th Symposium Structural Fire Engineering CY - Brunswick, Germany DA - 13.09.2022 KW - Fire test KW - Steel KW - Tension member KW - Intumescent coating KW - Test standard PY - 2022 SP - 1 EP - 14 PB - TU Braunschweig CY - Braunschweig AN - OPUS4-55703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Häßler, Mai A1 - Häßler, Dustin A1 - Hothan, Sascha A1 - Krüger, Simone T1 - Performance of intumescent fire protection coatings on steel tension rod systems T2 - 10th International Conference on Structures in Fire N2 - Steel tension rod systems consist of tension rods, fork connectors and associated intersection or connecting plates. They are used for truss systems, bracings or suspensions owing to slender design and increased economic efficiency. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. The use of intumescent fire protection coatings prevents a rapid heating of the steel and helps to ensure the load-carrying capacity of the structures. Because the connection components of the tension rod systems feature surface curvature as well as a complex geometry, high demand is placed on the intumescence and thermal protection effectiveness of the reactive fire protection coatings. Experimental studies were carried out to investigate the performance of intumescent coatings applied to the components of tension rod systems. The examined aspects include the foaming and cracking behaviour of the intumescent coatings, the influence of different dry film thicknesses (DFT), the heating rate of the steel connecting parts in comparison to the tension rods, as well as the mounting orientation of the tension rods together with their associated fork connectors. The results show that a decrease in the surface curvature and/or an increase in the mass concentration of the steel components lead to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by the mounting orientation of the steel components. T2 - 10th International Conference on Structures in Fire CY - Belfast, UK DA - 06.06.2018 KW - Steel KW - Tension rod system KW - Intumescent fire protection coating KW - Reactive fire protection system KW - Real-scale fire test PY - 2018 SN - 978-1-85923-274-3 SP - 649 EP - 654 PB - Ulster University CY - Belfast AN - OPUS4-45152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -