TY - JOUR A1 - Karafiludis, Stephanos A1 - Bhattacharya, Biswajit A1 - de Oliveira Guilherme Buzanich, Ana A1 - Fink, Friedrich A1 - Feldmann, Ines A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Thermally processed Ni-and Co-struvites as functional materials for proton conductivity N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves the transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1−x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms during degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed by in situ and ex situ scattering and diffraction, as well as X-ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on the metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1−x-struvites exhibit high surface areas and pore volumes (240 m2 g−1 and 0.32 cm−3 g−1 for Mg and 90 m2 g−1 and 0.13 cm−3 g−1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further application, for instance in (electro)catalysis. KW - Struvite KW - Phosphates KW - Transition metals KW - Proton conductivity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575862 DO - https://doi.org/10.1039/D3DT00839H SN - 1477-9226 SP - 1 EP - 13 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57586 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Bartling, Stephan A1 - Parlinska-Wojtan, Magdalena A1 - Wotzka, Alexander A1 - Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian A1 - Abdel-Mageed, Ali M. T1 - Stabilization of intermediate Mo oxidation states by Nb doping enhancing methane aromatization on Mo/HZSM-5 catalysts N2 - The dehydroaromatization of methane is a promising process to produce aromatics and ultra-pure hydrogen. Increased yields and stability of Mo/HZSM-5 against irreversible deactivation were achieved via a redox interaction by doping with otherwise inert Nb. KW - General Materials Science KW - Sustainability and the Environment KW - General Chemistry KW - Renewable Energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597670 DO - https://doi.org/10.1039/D3TA07532J SN - 2050-7488 SP - 1 EP - 16 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dietzmann, Simon A1 - Mehmood, Asad A1 - Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Fellinger, Tim-Patrick A1 - Thomas, A. T1 - Characterization of Solid-State Complexes by XAS N2 - Atomically dispersed metal-nitrogen doped carbons (M-N-C) are promising catalysts for the activation of small molecules such as O2 and CO2. These single atom catalysts (SAC) operate at the interface between homogenous and heterogenous catalysts. Currently, many examples of M-N-C are known with good oxygen reduction reaction activity but lacking a controlled synthesis of the specific active sites of the precatalyst. Recently, our group facilitated the synthesis of pure pyrrolic M-N4 sites using Zn ions as imprinters.[1] These amorphous materials obtained by active site imprinting method are characterized at the BAMline (Bessy II) by X-ray absorption spectroscopy (XAS). In-situ/operando measurements will be crucial in future work for a better understanding of the dynamic changes of the active site. T2 - InSynX Workshop 2023 CY - Sao Paulo, Brazil DA - 06.03.2023 KW - Solid-State Complexes PY - 2023 AN - OPUS4-58933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593433 DO - https://doi.org/10.1039/D3CY01439H SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Guilherme Buzanich, Ana A1 - Ahrens, M. A1 - Braun, T. A1 - Emmerling, Franziska T1 - An amorphous Lewis-acidic zirconium chlorofluoride as HF shuttle: C–F bond activation and formation N2 - An exceptional HF transfer reaction by C–F bond activation of fluoropentane and a subsequent hydrofluorination of alkynes at room temperature is reported. An amorphous Lewis-acidic Zr chlorofluoride serves as heterogeneous catalyst, which is characterised by an eightfold coordination environment at Zr including chlorine atoms. The studies are seminal in establishing sustainable fluorine chemistry. KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation KW - HF-shuttle PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582249 DO - https://doi.org/10.1039/D3CC03164K SN - 1359-7345 VL - 59 IS - 75 SP - 11224 EP - 11227 PB - RSC CY - Cambridge AN - OPUS4-58224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunkel, Benny A1 - Seeburg, Dominik A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Gutmann, Torsten A1 - Breitzke, Hergen A1 - Buntkowsky, Gerd A1 - Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian T1 - Highly productive V/Zn-SiO2 catalysts for the selective oxidation of methane N2 - The production of formaldehyde on industrial scale requires huge amounts of energy due to the involvement of reforming processes in combination with the demand in the megaton scale. Hence, a direct route for the transformation of (bio)methane to formaldehyde would decrease costs and puts less pressure on the environment. Herein, we report on the use of zinc modified silicas as possible support materials for vanadium catalysts and the resulting consequences for the performance in the selective oxidation of methane to formaldehyde. After optimization of the Zn content and reaction conditions, a remarkably high space-time yield of 12.4 kgCH2O⋅kgcat − 1 ⋅h− 1 was achieved. As a result of the extensive characterization by means of UV–vis, Raman, XANES and NMR spectroscopy it was found that vanadium is in the vicinity of highly dispersed zinc atoms which promote the formation of active vanadium species as supposed by theoretical calculations. This work presents a further step of catalyst development towards direct industrial methane conversion which may help to overcome current limitations in the future. KW - Catalysis KW - XANES KW - Selective oxidation PY - 2024 DO - https://doi.org/10.1016/j.cattod.2024.114643 SN - 0920-5861 VL - 432 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, R. A1 - Kunkel, B. A1 - Radnik, Jörg A1 - Hoell, A. A1 - Wohlrab, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction N2 - A facile and efficient methodology is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543606 DO - https://doi.org/10.1002/adem.202101308 SN - 1438-1656 SP - 1 EP - 13 PB - Wiley VCH AN - OPUS4-54360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cakir, Cafer Tufan A1 - Bogoclu, Can A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Machine learning for efficient grazing-exit x-ray absorption near edge structure spectroscopy analysis: Bayesian optimization approach N2 - In materials science, traditional techniques for analyzing layered structures are essential for obtaining information about local structure, electronic properties and chemical states. While valuable, these methods often require high vacuum environments and have limited depth profiling capabilities. The grazing exit x-ray absorption near-edge structure (GE-XANES) technique addresses these limitations by providing depth-resolved insight at ambient conditions, facilitating in situ material analysis without special sample preparation. However, GE-XANES is limited by long data acquisition times, which hinders its practicality for various applications. To overcome this, we have incorporated Bayesian optimization (BO) into the GE-XANES data acquisition process. This innovative approach potentially reduces measurement time by a factor of 50. We have used a standard GE-XANES experiment, which serve as reference, to validate the effectiveness and accuracy of the BO-informed experimental setup. Our results show that this optimized approach maintains data quality while significantly improving efficiency, making GE-XANES more accessible to a wider range of materials science applications. KW - Machine Learning KW - GE-XANES KW - Bayesian Optimization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603955 DO - https://doi.org/10.1088/2632-2153/ad4253 VL - 5 IS - 2 SP - 1 EP - 12 PB - IOP Publishing AN - OPUS4-60395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 DO - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Joester, Maike A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved in situ studies on the formation mechanism of iron oxide nanoparticles using combined fast-XANES and SAXS N2 - The reaction of iron chlorides with an alkaline reagent is one of the most prominent methods for the synthesis of iron oxide nanoparticles. We studied the particle formation mechanism using triethanolamine as reactant and stabilizing agent. In situ fast-X-ray absorption near edge spectroscopy and small-angle X-ray scattering provide information on the oxidation state and the structural information at the same time. In situ data were complemented by ex situ transmission electron microscopy, wide-angle X-ray scattering and Raman analysis of the formed nanoparticles. The formation of maghemite nanoparticles (γ-Fe2O3) from ferric and ferrous chloride was investigated. Prior to the formation of these nanoparticles, the formation and conversion of intermediate phases (akaganeite, iron(II, III) hydroxides) was observed which undergoes a morphological and structural collapse. The thus formed small magnetite nanoparticles (Fe3O4) grow further and convert to maghemite with increasing reaction time. KW - oxidation state KW - structural information KW - maghemite PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351376 DO - https://doi.org/10.1039/C5CE01585E SN - 1466-8033 VL - 17 IS - 44 SP - 8463 EP - 8470 CY - London, UK AN - OPUS4-35137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -