TY - JOUR A1 - Akhmetova, Irina A1 - Schuzjajew, K. A1 - Wilke, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Rademann, K. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Synthesis, characterization and in situ monitoring of the mechanochemical reaction process of two manganese(II)-phosphonates with N-containing ligands N2 - Two divalent manganese aminophosphonates, manganese mono (nitrilotrimethylphosphonate) (MnNP3) and manganese bis N-(carboxymethyl)iminodi(methylphosphonate)) (Mn(NP2AH)2), have been prepared by mechanochemical synthesis and characterized by powder X-ray diffraction (PXRD). The structure of the novel compound Mn(NP2AH)2 was determined from PXRD data. MnNP3 as well as Mn(NP2AH)2 exhibits a chain-like structure. In both cases, the manganese atom is coordinated by six oxygen atoms in a distorted octahedron. The local coordination around Mn was further characterized by extended X-ray absorption fine structure. The synthesis process was followed in situ by synchrotron X-ray diffraction revealing a three-step reaction mechanism. The asprepared manganese(II) phosphonates were calcined on air. All samples were successfully tested for their suitability as catalyst material in the oxygen evolution reaction. KW - Mechanochemistry KW - In situ KW - XRD PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2608-6 SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13390 EP - 13399 PB - Springer Science + Business Media B.V. AN - OPUS4-45673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinsch, Stefan A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Ca- and Sr- tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination N2 - New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides MII(OH)2·xH2O (MII: Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] and [{Sr(mBDC-F4)(H2O)2}·H2O] were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials. KW - Mechanochemistry KW - In situ KW - XRD KW - Coordination polymers PY - 2017 UR - http://pubs.rsc.org/-/content/articlehtml/2017/dt/c7dt00734e U6 - https://doi.org/10.1039/c7dt00734e VL - 46 IS - 18 SP - 6003 EP - 6012 AN - OPUS4-41516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bach, S. A1 - Visnow, E. A1 - Panthöfer, M. A1 - Gorelik, T. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gulo, A. A1 - Kolb, U. A1 - Emmerling, Franziska A1 - Lind, C. A1 - Tremel, W. T1 - Hydrate networks under mechanical stress – A case study for Co3(PO4)2·8H2O N2 - The nature of the bound water in solids with hydrogen-bonded networks depends not only on temperature and pressure but also on the nature of the constituents. The collapse and reorientation of these network structures determines the stability of hydrated solids and transitions to other crystalline or amorphous phases. Here, we study the mechanochemically induced loss of bound water in Co₃(PO₄)₂·8H₂O and compare this process to the behavior under hydrostatic pressure. The associated phase transition and its kinetics were monitored by X-ray powder diffraction with Synchrotron radiation and quantitative IR spectroscopy. High shearing forces are responsible for the degradation of the hydrogen-bonded network and the concomitant crystalline–amorphous transformation. UV/Vis spectroscopy, extended X-ray absorption spectroscopy (EXAFS), and X-ray absorption near-edge spectroscopy (XANES) provided information about the short-range order in the amorphous solid, and thermal analysis revealed its composition and showed that the moderate charge densities of the Co²⁺ and PO₄³⁻ ions, which make the hydration enthalpy comparable to the binding energy of the counteranions, and the Formation of hydrogen-bonded networks favor multistage crystallization processes associated with the release and uptake of coordinated water. The changes of the Co²⁺ coordination induce a color change from pink to blue; therefore, Co₃(PO₄)₂·8H₂O can be used as an overheat temperature indicator. KW - Mechanochemistry KW - Amorphous materials KW - Hydrates KW - Cobalt KW - Phosphates PY - 2016 U6 - https://doi.org/10.1002/ejic.201501481 SN - 1434-1948 SN - 1099-0682 VL - 2016 IS - 13-14 SP - 2072 EP - 2081 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Germany AN - OPUS4-36434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Haider, M. B. A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - AfLS3 CY - Online meeting DA - 14.11.2021 KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved KW - In situ PY - 2021 AN - OPUS4-56256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Denver X-ray Conference: DXC 2021 CY - Online meeting DA - 02.08.2021 KW - Dispersive XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2021 AN - OPUS4-56257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray absorption spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Advances X ray Analytics Seminar at TU Berlin CY - Berlin, Germany DA - 14.06.2022 KW - XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2022 AN - OPUS4-56259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Haider, M. Bilal A1 - Emmerling, Franziska A1 - F. M. Oliveira, P. A1 - Michalchuk, Adam A. L. T1 - Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions N2 - X-ray absorption spectroscopy (XAS) provides a unique, atom-specific tool to probe the electronic structure of solids. By surmounting long-held limitations of powder-based XAS using a dynamically averaged powder in a Resonant Acoustic Mixer (RAM), we demonstrate how time-resolved in situ (TRIS) XAS provides unprecedented detail of mechanochemical synthesis. The use of a custom-designed dispersive XAS (DXAS) setup allows us to increase the time resolution over existing fluorescence measurements from ∼15 min to 2 s for a complete absorption spectrum. Hence, we here establish TRIS-XAS as a viable method for studying mechanochemical reactions and sampling reaction kinetics. The generality of our approach is demonstrated through RAM-induced (i) bottom-up Au nanoparticle mechanosynthesis and (ii) the synthesis of a prototypical metal organic framework, ZIF-8. Moreover, we demonstrate that our approach also works with the addition of a stainless steel milling ball, opening the door to using TRIS-DXAS for following conventional ball milling reactions. We expect that our TRIS-DXAS approach will become an essential part of the mechanochemical tool box. KW - In situ studies KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-567659 SN - 1089-7690 VL - 157 IS - 21 SP - 1 EP - 12 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-56765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - de Oliveira Guilherme Buzanich, Ana A1 - Bienert, Ralf A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis N2 - Current time-resolved in situ approaches limit the scope of mechanochemical investigations possible. Here we develop a new, general approach to simultaneously follow the evolution of bulk atomic and electronic structure during a mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based X-ray methods: X-ray absorption spectroscopy (XAS) and X-ray diffraction. We apply this method to investigate the bottom-up mechanosynthesis of technologically important Au micro and nanoparticles in the presence of three different reducing agents, hydroquinone, sodium citrate, and NaBH4. Moreover, we show how XAS offers new insight into the early stage generation of growth species (e.g. monomers and clusters), which lead to the subsequent formation of nanoparticles. These processes are beyond the detection capabilities of diffraction methods. This combined X-ray approach paves the way to new directions in mechanochemical research of advanced electronic materials. KW - Mechanochemistry KW - XANES KW - X-ray diffraction KW - Nano particles PY - 2020 U6 - https://doi.org/10.1039/d0cc03862h SN - 1364-548X VL - 56 SP - 10329 EP - 10332 PB - Royal Society of Chemistry AN - OPUS4-51760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates N2 - We describe a fast and effective synthesis for molecular metal phosphonates. Isomorphic compounds [M(II)(HO₃PPh)₂(H₂O₃PPh)₂(H₂O)₂] (M = Mn (1), Co (2), Ni (3); Ph = C₆H₅) were obtained by grinding. The complexes are mononuclear compounds containing neutral and monodeprotonated phenylphosphonic acid and water as ligands. The crystal structures were determined using powder X-ray diffraction (PXRD) data and validated by extended X-ray absorption fine structure (EXAFS) data. Combined synchrotron XRD measurements and Raman spectroscopy were conducted for investigating the reactions in situ. Based on these data, the intermediates were characterized and the formation mechanism was derived. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - XRD PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-363944 SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 45 IS - 23 SP - 9460 EP - 9467 AN - OPUS4-36394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Gorelik, T. E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Kolb, U. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The crystallisation of copper(II) phenylphosphonates N2 - The crystal structures and syntheses of four different copper(II) phenylphosphonates, the monophenylphosphonates α-, β-, and γ-Cu(O3PC6H5)·H2O (α-CuPhPmH (1) β-CuPhPmH (2) and γ-CuPhPmH (3)), and the diphosphonate Cu(HO3PC6H5)2·H2O (CuPhP2mH (4)), are presented. The compounds were synthesized from solution at room temperature, at elevated temperature, under hydrothermal conditions, and mechanochemical conditions. The structures of α-CuPhPmH (1) and CuPhP2mH (4) were solved from powder X-ray diffraction data. The structure of β-CuPhPmH (2) was solved by single crystal X-ray analysis. The structures were validated by extended X-ray absorption fine structure (EXAFS) and DTA analyses. Disorder of the crystal structure was elucidated by electron diffraction. The relationship between the compounds and their reaction pathways were investigated by in situ synchrotron measurements. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-384217 SN - 1477-9226 SN - 1477-9234 VL - 45 IS - 43 SP - 17453 EP - 17463 PB - The Royal Society of Chemistry AN - OPUS4-38421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -