TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Akcakayiran, D. A1 - Grigoriev, D. A1 - Shchukin, D.G. T1 - High-resolution SEM with coupled transmission mode and EDX for quick characterization of micro- and nanocapsules for self-healing anti-corrosion coatings N2 - More and more sub-micro and nano-materials shall be "quickly", but accurately characterized with respect to their morphology, shape, size or size distribution, but also to the chemical composition as well by means of an SEM/EDX (Scanning Electron Microscopy / X-Ray Energy Dispersive Spectrometry) system. This undertaking is becoming successful indeed if the transmission mode at low voltages such as those at a SEM, i. e. mostly up to 30 kV, and EDX, respectively is employed. The transmission mode at conventional SEM can e "activated" firstly by re-defining the specimen to be analyzed and preparing it as a thin specimen, which is quasi-transparent to electrons and by finding a way of collecting only the transmitted electrons for analysis. The first issue can be easily realized by using the conventional TEM grids (and the respective sample preparation); the second one becomes feasible either (i) by placing a socalled STEM semiconductor detector directly under the thin specimen or (ii) by using a Special transmission set-up, which enables to the conventional Everhart-Thornley detector to collect only transmitted electrons by blocking the direct collection of secondary electrons and guiding only the transmitted electrons onto it. KW - Microcapsules KW - Nanocapsules KW - Anti-corrosion KW - SEM KW - TSEM KW - Transmission KW - EDX PY - 2013 U6 - https://doi.org/10.1017/S1431927613003863 SN - 1431-9276 SN - 1435-8115 VL - 19 IS - Suppl. 2 SP - 374 EP - 375 PB - Cambridge University Press CY - New York, NY AN - OPUS4-29444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Akcakayiran, D. A1 - Grigoriev, D.O. A1 - Shchukin, D.G. T1 - Characterization of micro- and nanocapsules for self-heating anti-corrosion coatings by high-resolution SEM with coupled transmission mode and EDX N2 - The observation of morphological details down to the nanometer range of the outer surface of micro-, submicro- and nanoparticles in a high-resolution scanning electron microscope (SEM) was extended with in-depth observation by enabling the transmission mode in the SEM, i.e. TSEM. The micro- and nanocapsules characterized in this study were fabricated as depots for protective agents to be embedded in innovative self-healing coatings. By combining the two imaging modes (upper and in-depth observation) complementing each other a better characterisation by a more comprehensive interpretation of the 'consistency' of the challenging specimens, e.g. including details 'hidden' beyond the surface or the real specimen shape at all, has been attained. Furthermore, the preparation of the quasi electron transparent samples onto thin supporting foils enables also elemental imaging by energy dispersive X-ray spectroscopy (EDX) with high spatial resolution. Valuable information on the elemental distribution in individual micro-, submicro- and even nanocapsules completes the '3D' high resolution morphological characterization at the same multimodal SEM/TSEM/EDX system. KW - Scanning electron microscopy (SEM) KW - High-resolution transmission in SEM (TSEM) KW - Energy dispersive X-ray spectroscopy (EDX) KW - Micro- and nanocapsules KW - Anti-corrosion coatings PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-304201 SN - 0003-2654 SN - 1364-5528 VL - 139 IS - 8 SP - 2004 EP - 2010 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-30420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tleuova, A. A1 - Schenderlein, Matthias A1 - Mutaliyeva, B. A1 - Aidarova, S. A1 - Sharipova, A. A1 - Bekturganova, N. A1 - Miller, R. A1 - Grigoriev, D. T1 - Selection and study of alkoxysilanes as loading in submicrocapsules for self-lubricating coatings N2 - The possibility and conditions for the formation of nano- or submicrocapsules loaded with hydrophobic active ingredients (alkoxysilanes) into the matrix of coatings with self-lubricating effect are considered. The optimal composition of the alkoxysilane submicrocapsules, and their physicochemical properties were determined. The longer the radical chain length is, the lower is the rate of hydrolysis, and, accordingly, the more stable is the formed emulsion. The methods of laser correlation spectroscopy in measuring the size and zeta potentials of the submicrocapsules with different loads of the active agent allowed to determine the optimal ratios of the active ingredients. The optimal concentration of the active agent is between 4 and 9%. Based on contact angle studies, octadecyltrimethoxysilane was selected as optimum compound. The introduction of 4 wt% of octadecyltrimethoxysilane reduces the friction coefficient of coatings by 20–30% under vibrating motion and by 15–20% under continuous motion. The data obtained can also be useful for the encapsulation of other hydrophobic active agents and for various other purposes, for example, for the introduction of biocidal agents. KW - Microencapsulation KW - Spontaneous emulsification KW - Self-lubricating coating KW - Antifriction coefficient KW - Alkoxysilanes PY - 2019 U6 - https://doi.org/10.1016/j.colsurfa.2018.12.018 SN - 0927-7757 SN - 1873-4359 IS - 563 SP - 359 EP - 369 PB - Elsevier AN - OPUS4-47233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -