TY - CONF A1 - Griesche, Axel T1 - Hydrogen in Iron visualized in 3D by neutron tomography N2 - Presented are neutron tomographies on hydrogen charged iron samples. T2 - RACIRI Summer School 2015 CY - Sellin, Rügen, Germany DA - 22.08.2015 KW - Tomographie KW - Wasserstoff KW - Neutronen KW - Hydrogen KW - Neutron KW - Tomography PY - 2014 AN - OPUS4-44838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. T1 - Imaging of Hydrogen in Steels using Neutrons T2 - Euromat 2013 CY - Seville, Spain DA - 2013-09-09 PY - 2013 AN - OPUS4-29216 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Kannengießer, Thomas T1 - Neutron imaging of hydrogen in steels T2 - Materials Science & Technology (MS&T) 2013 CY - Montreal, Quebec, Canada DA - 2013-10-27 KW - Neutron radiography KW - Hydrogen KW - Diffusion KW - Steel PY - 2013 SP - 945 EP - 950 PB - Curran CY - Red Hook, NY AN - OPUS4-29506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. T1 - NEUTRON IMAGING OF HYDROGEN IN STEELS T2 - MS&T 2013 Symposium: Applied Neutron Scattering in Engineering and Materials Science Research CY - Montreal, Canada DA - 2013-10-28 PY - 2013 AN - OPUS4-29503 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Lexow, Jürgen T1 - Research on materials simulation and the promotion of global databases - activities within the world materials research institute forum (WMRIF) T2 - Materials Science & Technology (MS&T) 2013 CY - Montreal, Quebec, Canada DA - 2013-10-27 KW - ICME KW - WMRIF KW - VAMAS KW - M-ERA.net KW - Materials simulation KW - Global databases PY - 2013 SP - 2551 EP - 2554 PB - Curran CY - Red Hook, NY AN - OPUS4-29718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Lexow, Jürgen T1 - Research on materials simulation and the promotion of global databases - activities within the world materials research institute forum (WMRIF) T2 - MS&T 2013 Symposium: Material Data and Software Tools Needed to Make MGI and ICME a Reality CY - Montreal, Canada DA - 2013-10-28 PY - 2013 AN - OPUS4-29459 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Solórzano, E. A1 - Beyer, Katrin A1 - Kannengießer, Thomas T1 - The advantage of using in-situ methods for studying hydrogen mass transport: Neutron radiography vs. carrier gas hot extraction N2 - Neutron radiography (NR) is compared with the commonly used carrier gas hot extraction (CGHE) technique. We performed isothermal hydrogen effusion experiments at 623 K to study the mass transport kinetics. The investigated material was technical iron. The quantification of the hydrogen mass flow is done for NR by using concentration standards. The temporal hydrogen concentration evolution in the sample coincides well for both methods, i.e. NR and CGHE, and is in good agreement with literature. The advantages of the NR method are the non-destructive nature of measuring and the in-situ determination of hydrogen concentrations with high spatial and temporal resolution. Remaining hydrogen inside the sample can be identified directly by the NR method. KW - Hydrogen diffusion KW - In-situ KW - Neutron radiography KW - Carrier gas hot extraction KW - Imaging PY - 2013 U6 - https://doi.org/10.1016/j.ijhydene.2013.08.145 SN - 0360-3199 VL - 38 IS - 34 SP - 14725 EP - 14729 PB - Elsevier CY - Oxford AN - OPUS4-29413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Griesche, Axel A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Calzada, E. T1 - Hydrogen diffusion measurements in steels using neutron imaging N2 - Revealing hydrogen embrittlement mechanisms in steels is of great interest to scientists and engineers. Neutron radiography makes it possible to measure in-situ hydrogen diffusion with high spatial and temporal resolution at concentrations as low as 20 ppm. We compare hydrogen-charged specimens with hydrogen-free reference specimens and use calibration standards to normalize the hydrogen concentrations. This allows quantitative tracking of the hydrogen concentration evolution as a function of time, space and temperature. Furthermore, a view into the material with 'neutron eyes' facilitates the detection of cavities that contain molecular hydrogen. KW - Hydrogen KW - Diffusion KW - Steel KW - Neutron radiography PY - 2012 UR - http://cdn.frm2.tum.de/fileadmin/stuff/information/documents/annualReports/Annual_Report_2011_online_version.pdf SP - 50 EP - 51 AN - OPUS4-25981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Horbach, Jürgen A1 - Meyer, Andreas T1 - Thermodynamics and Correlation Effects on Diffusion in Al-Ni Melts T2 - NIST Diffusion Workshop Series: Multicomponen Diffusion Data and Its Impact on the Materials Design Process: Data Needed; Daa Acquisition; and Data Application CY - Gaithersburg, MD, USA DA - 2012-05-03 PY - 2012 AN - OPUS4-25895 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel T1 - World Materials Research Institute Forum - An Introduction T2 - NIST Diffusion Workshop Series: Multicomponen Diffusion Data and Its Impact on the Materials Design Process: Data Needed; Data Acquisition; and Data Application CY - Gaithersburg, MD, USA DA - 2012-05-03 PY - 2012 AN - OPUS4-25896 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Griesche, Axel A1 - Schillinger, B. T1 - Neutron radiography study of hydrogen desorption in technical iron N2 - The purpose of the present study is to show the feasibility of examining hydrogen desorption in technical iron samples using neutron radiography at the ANTARES facility of the FRM II research reactor, Technische Universität München. It has been shown that this method is appropriate for in situ determination of hydrogen Desorption for concentrations as low as 20 ppmH. Experiments were carried out in the temperature range from room temperature up to 260 °C. Measurement was based on direct comparison between electrochemically hydrogen-loaded iron samples and hydrogen-free reference samples at the same temperature. This enables the determination of hydrogen concentration as a function of time and temperature. Ex situ carrier gas hot extraction experiments using the same temperature–time profiles as the neutron radiography experiments have been used to calibrate the greyscale values of the radiographs to defined hydrogen concentrations. It can be stated that hydrogen desorption correlates with sample temperature. KW - Neutron radiography KW - Hydrogen PY - 2011 U6 - https://doi.org/10.1007/s10853-011-5450-7 SN - 0022-2461 SN - 1573-4803 VL - 46 IS - 15 SP - 5171 EP - 5175 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-25150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Altenkirch, J. A1 - Gibmeier, J. A1 - Beyer, Katrin A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Welding problems - Investigations with neutrons of residual stress and of hydrogen diffusion in steels N2 - We report about investigations of typical material problems in steels. First, residual stresses in and around weld seams with low martensite transition temperature filler material were analyzed w/ and w/o additional transverse tensile load. The investigation was accompanied by x-ray diffraction measurements to track stress-induced phase transitions. Martensite formation during welding under external load yield strain gradients near the surface that improve the integrity of the weld. Further, the residual stress distribution close to laser-treated steel surfaces was analyzed. The method could be improved to reduce analysis artifacts. Finally, hydrogen diffusion in different steels was measured using neutron radiography and subsequent image analysis. Diffusion coefficients were derived by analyzing the time-dependent mass flux. In an outlook we describe the optimal ESS instrumentation from a metallurgist’s point of view. T2 - ESS Workshop "Science Vision for the European Spallation Source - German Perspectives" CY - Bad Reichenhall, Germany DA - 2011-10-10 PY - 2011 UR - http://www.fz-juelich.de/cae/servlet/contentblob/1058986/publicationFile/24649/Griesche_pdf.pdf UR - http://www.fz-juelich.de/sid_BD693DF17F42B3018726EE5C2558C56C/jcns/EN/Leistungen/ConferencesAndWorkshops/ESS/_node.html AN - OPUS4-24464 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuskin, D. A1 - Kargl, F. A1 - Griesche, Axel A1 - Stenzel, C. A1 - Mitschke, D. A1 - Bräuer, D. A1 - Meyer, A. T1 - MSL compatible isothermal furnace insert for high temperature shear-cell diffusion experiments N2 - For long-time diffusion experiments shear-cell techniques offer more favourable terms than the traditional long capillary techniques. Here, we present a further developed shear-cell that enables the measurement of diffusion coefficients up to temperatures of 1600 °C. Hence, diffusion experiments can be carried out at temperatures not accessible until now by conventional capillary or shear-cell techniques. The modified shear-cell, which can contain up to six samples of a total length of 90mm and a diameter of 1.5 mm, is built of 30 shear discs of 3mm thickness each. It is operated in an isothermal furnace insert which can be accommodated in the Materials Science Laboratory of the International Space Station. This provides the opportunity that the shear-cell can be applied to microgravity and to ground-based experiments, respectively. The heater insert with an overall length of 518mm and a diameter of 210mm consists of four heating zones with a total power of 3.5 kW. Temperature homogeneity along the graphite sample compartment is better than 2K at 1600°C. Details of the new design are discussed and results of first successfully performed heating and shearing cycles are presented. KW - Microgravity KW - Diffusion KW - Shear cell KW - Melt KW - Alloy PY - 2011 U6 - https://doi.org/10.1088/1742-6596/327/1/012053 SN - 1742-6588 SN - 1742-6596 VL - 327 IS - 012053 SP - 1 EP - 8 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-24994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kargl, F. A1 - Engelhardt, M. A1 - Yang, F. A1 - Weis, H. A1 - Schmakat, P. A1 - Schillinger, B. A1 - Griesche, Axel A1 - Meyer, A. T1 - In situ studies of mass transport in liquid alloys by means of neutron radiography N2 - When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al2O3 based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al68.6Cu13.8Ag17.6 at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. KW - Neutron radiography KW - Diffusion KW - Liquid alloys KW - Shear cell PY - 2011 U6 - https://doi.org/10.1088/0953-8984/23/25/254201 SN - 0953-8984 SN - 1361-648X VL - 23 IS - 25 SP - 254201-1 EP - 254201-8 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-23854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Griesche, Axel A1 - Schillinger, B. T1 - Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography N2 - The purpose of the present study was to show the feasibility of measuring hydrogen effusion in austenitic stainless steel (1.4301) using neutron radiography at the facility ANTARES of the research reactor FRM II of the Technische Universität München. This method is appropriate to measure in-situ hydrogen effusion for hydrogen concentrations as small as 20 ppmH. Experiments were carried out in the temperature range from room temperature up to 533 K. The measurement principle is based on the parallel comparison of electrochemically hydrogen charged specimen with hydrogen-free reference specimen at the same temperature. This allows the determination of the hydrogen concentration in the specimens as a function of time and temperature. Separate hot carrier gas extraction experiments using the same temperature–time profiles as the radiography experiments have been used to calibrate the grey values of the neutron transmission images into hydrogen concentrations. It can be stated that the hydrogen effusion correlates with the specimen temperature. KW - Hydrogen effusion KW - Austenitic stainless steels KW - Neutron radiography PY - 2011 U6 - https://doi.org/10.1016/j.nima.2011.02.010 SN - 0168-9002 SN - 0167-5087 VL - 651 IS - 1 SP - 211 EP - 215 PB - North-Holland CY - Amsterdam AN - OPUS4-23401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Horbach, J. A1 - Meyer, A. T1 - Influence of thermodynamic forces on diffusion in melts N2 - We report about diffusion measurements and molecular dynamic simulations in Al-Ni and Al-Cu melts. Capillary methods were used to measure Ni and Cu self diffusion and to measure interdiffusion. The combination of the capillary set-up with X-ray radiography allowed in-situ detecting of convective contributions to the interdiffusion transport by tracking the time dependence of diffusion. Thus, the determination of the interdiffusion coefficient can be restricted to convection-free experiment times resulting in an increased accuracy of the measured interdiffusion coefficient. Additionally, quasielastic neutron scattering was used to measure convection-free Ni and Cu self diffusion. Molecular dynamics simulations were used to determine all diffusion coefficients and the thermodynamic factor. The comparison between experiment and simulation shows an excellent agreement of the interdiffusion coefficients as a function of temperature. It was found that interdiffusion is enhanced by thermodynamic forces with a maximum around the stoichiometric composition. T2 - TMS 2011 CY - San Diego, CA, USA DA - 2011-02-27 PY - 2011 AN - OPUS4-23340 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel T1 - Diffusion of hydrogen in steels T2 - DLR-Seminar CY - Cologne, Germany DA - 2011-02-15 PY - 2011 AN - OPUS4-23341 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Solórzano, E. T1 - In-situ measurement of hydrogen diffusion in steels using neutron radiography T2 - DIMAT 2011, 8th International Conference On Diffusion In Materials CY - Dijon, France DA - 2011-07-03 PY - 2011 AN - OPUS4-24312 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Zhang, B. A1 - Solórzano, E. A1 - Garcia-Moreno, F. T1 - Note: X-ray radiography for measuring chemical diffusion in metallic melts N2 - A x-ray radioscopy technique for measuring in situ chemical diffusion coefficients in metallic melts is presented. The long-capillary diffusion measurement method is combined with imaging techniques using microfocus tubes and flat panel detectors in order to visualize and quantitatively analyze diffusive mixing of two melts of different chemical composition. The interdiffusion coefficient as function of temperature and time is obtained by applying Fick’s diffusion laws. Tracking the time dependence of the mean square penetration depth of the mixing process allows to detect changes in the mass transport caused by convective flow. The possibility to sort out convective mass transport contributions from analysis enhances significantly the accuracy compared to the conventional long-capillary diffusion measurement method with postmortem analysis. The performance of this novel diffusion measurement method with x-ray radiography technique is demonstrated by a diffusion experiment in an Al-Ni melt. KW - Diffusion KW - Metal KW - Aluminium KW - Nickel KW - Melt KW - In-situ KW - Radiography KW - Capillary KW - Aluminium-alloys KW - Chemical analysis KW - Chemical interdiffusion KW - Convection KW - Liquid alloys KW - Mass transfer KW - Nickel alloys KW - X-ray apparatus PY - 2010 U6 - https://doi.org/10.1063/1.3427256 SN - 0034-6748 SN - 1089-7623 VL - 81 SP - 056104-1 - 056104-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Schillinger, B. T1 - In-situ observation of hydrogen diffusion in iron using neutron radiography N2 - Hydrogen assisted cracking of metals limits the durability of welds and constructions. Still the failure mechanisms are not fully understood, for instance the role of hydrogen mass transport during crack initiation. Measuring the hydrogen concentration as a function of time (and space) would allow to determine diffusion coefficients helping to enlighten this lack of understanding. Therefore, neutron radiography is a valuable tool for measuring in situ hydrogen transport in iron and steels [1]. The influence of grain boundaries on the hydrogen diffusion behaviour can be determined by comparing the diffusion behaviour of samples with e.g. different microstructure. In a first study we investigated in situ the simplest case, the hydrogen effusion out of pure iron (ARMCO) using neutron radiography at ANTARES [2]. Samples were charged electrochemically ex situ with a well defined amount of hydrogen, stored in liquid nitrogen and were then heat treated during a neutron radiography measurement whilst the change of neutron transmission was recorded. For analysis the gray values in the pictures were transformed into concentrations with help of an ex post calibration. Therefore, the experimental temperaturetime profile of the heat treatment has been repeated with identical samples in the home lab and the amount of effusing hydrogen was measured by carrier gas hot extraction. In a first approximation the concentration of hydrogen in the sample can be calculated by subtracting the hydrogen concentration in the atmosphere from the initial one in the sample. We were able to measure hydrogen concentrations as low as 65 wt.ppm. Simultaneously monitoring of hydrogenous sample and hydrogen-free reference allowed for in situ measurement of hydrogen effusion. Sample heating was done by infrared radiation. Diffusion coefficients for hydrogen effusion from iron have been calculated. They coincide fairly with literature data. T2 - 3rd FRM II User Meeting CY - Garching, Germany DA - 2010-10-15 PY - 2010 AN - OPUS4-22835 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel ED - Kuhlmann, H.C. T1 - Topical team ATLAS - atomic transport in liquids and semiconductors KW - Diffusion KW - Topical team KW - ESA KW - Alloy KW - Semiconductor PY - 2010 SN - 2219-5602 VL - December IS - 7 SP - 19 AN - OPUS4-23468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Griesche, Axel A1 - Engelhardt, M. A1 - Kargl, F. A1 - Meyer, A. A1 - Weis, H. A1 - Yang, F. T1 - Diffusion measurements with neutron radiography KW - Diffusion KW - Metal KW - Semiconductor KW - Melt KW - In-situ KW - Radiography KW - Darken KW - Capillary PY - 2009 IS - Chapter 4.1.5 SP - 214 EP - 215 AN - OPUS4-21449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -