TY - JOUR A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Griesche, Axel A1 - Schillinger, B. T1 - Neutron radiography study of hydrogen desorption in technical iron JF - Journal of materials science N2 - The purpose of the present study is to show the feasibility of examining hydrogen desorption in technical iron samples using neutron radiography at the ANTARES facility of the FRM II research reactor, Technische Universität München. It has been shown that this method is appropriate for in situ determination of hydrogen Desorption for concentrations as low as 20 ppmH. Experiments were carried out in the temperature range from room temperature up to 260 °C. Measurement was based on direct comparison between electrochemically hydrogen-loaded iron samples and hydrogen-free reference samples at the same temperature. This enables the determination of hydrogen concentration as a function of time and temperature. Ex situ carrier gas hot extraction experiments using the same temperature–time profiles as the neutron radiography experiments have been used to calibrate the greyscale values of the radiographs to defined hydrogen concentrations. It can be stated that hydrogen desorption correlates with sample temperature. KW - Neutron radiography KW - Hydrogen PY - 2011 DO - https://doi.org/10.1007/s10853-011-5450-7 SN - 0022-2461 SN - 1573-4803 VL - 46 IS - 15 SP - 5171 EP - 5175 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-25150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Griesche, Axel A1 - Schillinger, B. T1 - Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography JF - Nuclear instruments and methods in physics research A N2 - The purpose of the present study was to show the feasibility of measuring hydrogen effusion in austenitic stainless steel (1.4301) using neutron radiography at the facility ANTARES of the research reactor FRM II of the Technische Universität München. This method is appropriate to measure in-situ hydrogen effusion for hydrogen concentrations as small as 20 ppmH. Experiments were carried out in the temperature range from room temperature up to 533 K. The measurement principle is based on the parallel comparison of electrochemically hydrogen charged specimen with hydrogen-free reference specimen at the same temperature. This allows the determination of the hydrogen concentration in the specimens as a function of time and temperature. Separate hot carrier gas extraction experiments using the same temperature–time profiles as the radiography experiments have been used to calibrate the grey values of the neutron transmission images into hydrogen concentrations. It can be stated that the hydrogen effusion correlates with the specimen temperature. KW - Hydrogen effusion KW - Austenitic stainless steels KW - Neutron radiography PY - 2011 DO - https://doi.org/10.1016/j.nima.2011.02.010 SN - 0168-9002 SN - 0167-5087 VL - 651 IS - 1 SP - 211 EP - 215 PB - North-Holland CY - Amsterdam AN - OPUS4-23401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boateng, Francis Twumasi A1 - Ewert, Uwe A1 - Kannengießer, Thomas A1 - Zscherpel, Uwe A1 - Griesche, Axel A1 - Kromm, Arne A1 - Hohendorf, Stephan A1 - Redmer, Bernard T1 - Real-time radiography for observation of crack growth during GTA (Gas Tungsten Arc) welding JF - Welding in the world N2 - In situ crack detection in the mushy zone and the solid weld of a gas tungsten arc (GTA) weld using X-ray imaging during welding is a new research area for NDT inspection. Usually, NDT flaw detection is done after the complete solidification of the weld seam. In this paper, we present the use of real-time radiography with a minifocus X-ray source (YXLON X-ray tube Y.TU 225-D04) and a 75μm pixel size digital detector array (Dexela 1512) for the acquisition of 2D radiographic images by a sequence of exposures with time intervals of 80 ms for hot crack detection during single pass bead-on-plate GTA welding of 3 mm thick plates of aluminium alloy AlMgSi (6060). An analysis of the crack distribution in the weld sample is conducted from the acquired 2D radiographs and its corresponding 3D volumetric reconstruction achieved by linear coplanar digital laminography. This in situ approach opens new possibilities in the field of hot crack research by having the direct information of both the crack initiation and growth and its correlation to the welding parameters. KW - Hot cracking KW - Radiography KW - GTA welding KW - Aluminium alloys KW - Real-time operation PY - 2016 DO - https://doi.org/10.1007/s40194-016-0351-7 SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 5 SP - 931 EP - 937 AN - OPUS4-37128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dabah, Eitan A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kardjilov, N. A1 - Manke, I. A1 - Boin, M. A1 - Woracek, R. A1 - Griesche, Axel T1 - Time-resolved Bragg-edge neutron radiography for observing martensitic phase transformation from austenitized super martensitic steel JF - Journal of Materials Science N2 - Neutron Bragg-edge imaging was applied for the visualization of a γ-Austenite to α'-martensite phase transformation. In the present study, a super martensitic stainless steel sample was heated until complete austenitization and was subsequently cooled down to room temperature. The martensitic phase Transformation started at Ms = 190 °C. Using a monochromatic neutron beam with λ = 0.390 nm, the transmitted intensity was significantly reduced during cooling below Ms, since the emerging martensitic phase has a higher attenuation coefficient than the austenitic phase at this wavelength. The phase Transformation process was visualized by filming the transmission images from a scintillator screen with a CCD camera with a temporal resolution of 30 s and a spatial resolution of 100 µm. KW - Neutron imaging KW - Bragg-edge imaging KW - Phase transformation PY - 2017 DO - https://doi.org/10.1007/s10853-016-0642-9 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 6 SP - 3490 EP - 3496 AN - OPUS4-38574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gollnow, C. A1 - Griesche, Axel A1 - Weidemann, Jens A1 - Kannengießer, Thomas T1 - Influence of external loads on a characteristic angle between grains and solidus line as an indicator for hot cracking susceptibility during GTA welding JF - Journal of Materials Processing Technology N2 - A long list of criteria determining the hot cracking susceptibility already exists. A main influence on solidification cracking can result from the design of the welded construction, i.e. from the influence of external loads. Using the Controlled Tensile Weldability (CTW) test, an external load hot cracking test, the influence of constant pre-load and different extension rates on the solidification cracking behavior of GTA (Gas Tungsten Arc) welds in an austenitic (AISI 309) and a ferritic (AISI 441) steel were investigated. Compared to specimens welded allowing free shrinkage and welded with an applied constant tensile pre-load, the specimens welded during the application of increasing tensile load show solidification cracks. In the weld seams, a characteristic angle α between the predominantly columnar grains and the fusion line can be observed. Specimens showing solidification cracks show a significantly larger angle α compared to the crack-free specimens. Based on these observations, the characteristic angle α is proposed as a new hot cracking criterion. KW - Hot cracking KW - External load test KW - Component design KW - Crack criterion KW - Grain growth PY - 2017 DO - https://doi.org/10.1016/j.jmatprotec.2016.08.013 VL - 239 SP - 172 EP - 177 PB - Elsevier AN - OPUS4-37278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel ED - Kuhlmann, H.C. T1 - Topical team ATLAS - atomic transport in liquids and semiconductors JF - Elgra newsletter - Newsletter of the European low gravity research association KW - Diffusion KW - Topical team KW - ESA KW - Alloy KW - Semiconductor PY - 2010 SN - 2219-5602 VL - December IS - 7 SP - 19 AN - OPUS4-23468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas T1 - Neutron imaging of hydrogen in iron and steel JF - Canadian metallurgical quarterly N2 - Neutron radiography and tomography have been used for a time resolved in situ analysis and a 3D mapping of hydrogen diffusion in iron and steel. Samples were electrochemically charged with hydrogen and afterwards neutron transmission images were taken. Hydrogen diffusion coefficients in duplex stainless steel were determined at 623 K by measuring and comparing the sample's mean intensity with a hydrogen-free reference sample and subsequent normalisation to standards with known hydrogen content. In technical iron and in supermartensitic stainless steel the hydrogen distributions have been investigated. The radiographic images in iron show blisters, cracks and the distribution of molecular hydrogen inside cracks. The analysis of the diffusion behaviour of hydrogen out of a blister illustrates the capabilities of the method with respect to time and spatial resolution. The neutron tomography of supermartensitic tensile stressed samples illustrates the capability to visualise hydrogen distributions three-dimensionally. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- On a utilisé la radiographie neutronique et la tomographie pour une analyse in situ à résolution temporelle et une cartographie 3D de la diffusion de l'hydrogène dans le fer et l'acier. On a chargé des échantillons par électrochimie avec de l'hydrogène et ensuite on a pris des images par émission de neutrons. On a déterminé les coefficients de diffusion de l’hydrogène dans l'acier inoxydable duplex à 623 K en mesurant et en comparant l'intensité moyenne de l'échantillon avec un échantillon de référence sans hydrogène et une normalisation subséquente à des échantillons références à teneur connue en hydrogène. On a examiné la distribution d'hydrogène dans le fer technique et dans l'acier inoxydable supermartensitique. Les images radiographiques du fer montrent des soufflures, des fissures, et la distribution de l'hydrogène moléculaire à l'intérieur des fissures. L'analyse du comportement de diffusion de l'hydrogène hors d'une soufflure illustre les possibilités de la méthode par rapport à la résolution temporelle et spatiale. La tomographie neutronique des échantillons supermartensitiques chargés en traction illustre la capacité de visualiser les distributions d'hydrogène en trois dimensions. KW - Neutron radiography KW - Hydrogen KW - Diffusion KW - Iron KW - Steel KW - Blister KW - Hydrogen assisted cracking PY - 2015 DO - https://doi.org/10.1179/1879139514Y.0000000162 SN - 0008-4433 VL - 54 IS - 1 SP - 38 EP - 42 PB - Canadian Institute of Mining and Metallurgy CY - Montreal AN - OPUS4-32809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Schillinger, B. T1 - Measuring hydrogen distributions in iron and steel using neutrons JF - Physics Procedia N2 - Neutron tomography has been applied to investigate the mechanism of hydrogen assisted cracking in technical iron and supermartensitic steel. Rectangular technical iron block samples showed blistering due to intense hydrogen charging and the tomographic method revealed in situ the spatial distribution of hydrogen and cracks. Hydrogen accumulated in a small region around cracks and the cracks are filled with hydrogen gas. Cracks close to the surface contained no hydrogen. Hydrogenous tensile test samples of supermartensitic steel were pulled until rupture and showed hydrogen accumulations at the notch base and in the plastically deformed region around the fracture surface. T2 - 10th World Conference on Neutron Radiography (WCNR) CY - Grindelwald, Switzerland DA - 05.10.2014 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-348022 DO - https://doi.org/10.1016/j.phpro.2015.07.062 SN - 1875-3892 VL - 69 SP - 445 EP - 450 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. T1 - Three-dimensional imaging of hydrogen blister in iron with neutron tomography JF - Acta materialia N2 - We investigated hydrogen embrittlement and blistering in electrochemically hydrogen-charged technical iron samples at room temperature. Hydrogen-stimulated cracks and blisters and the corresponding hydrogen distributions were observed by neutron tomography. Cold neutrons were provided by the research reactor BER II to picture the sample with a spatial resolution in the reconstructed three-dimensional model of ~25 µm. We made the unique observation that cracks were filled with molecular hydrogen and that cracks were surrounded by a 50 µm wide zone with a high hydrogen concentration. The zone contains up to ten times more hydrogen than the bulk material. The hydrogen enriched zone can be ascribed to a region of increased local defect density. Hydrogen also accumulated at the sample surface having the highest concentration at blistered areas. The surfaces of the brittle fractured cracks showed micropores visualized by scanning electron microscopy. The micropores were located at grain boundaries and were surrounded by stress fields detected by electron backscattered diffraction. The cracks clearly originated from the micropores. KW - Hydrogen embrittlement KW - Hydrogen diffusion KW - In situ KW - Neutron tomography KW - Iron PY - 2014 DO - https://doi.org/10.1016/j.actamat.2014.06.034 SN - 1359-6454 SN - 1873-2453 VL - 78 SP - 14 EP - 22 PB - Elsevier Science CY - Kidlington AN - OPUS4-31068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. A1 - Kannengießer, Thomas T1 - Imaging of hydrogen in steels using neutrons JF - International journal of materials research N2 - We investigated the hydrogen distribution spatially and temporally in technical iron at room temperature. Samples were charged electrochemically and subsequently analysed by means of neutron radiography and tomography. The radiographic images allowed for a time-resolved analysis of hydrogen fluxes. The three-dimensional distribution of hydrogen measured by neutron tomography delivered valuable information for the damage analysis of hydrogen-induced cracks. For the first time hydrogen concentration gradients inside the material could be detect directly together with the cracks. The neutron radiography and tomography results were gained at the Research Reactor BER II of the HZB in Berlin. KW - Hydrogen embrittlement KW - Hydrogen diffusion KW - Neutron tomography KW - Blister PY - 2014 DO - https://doi.org/10.3139/146.111043 SN - 1862-5282 VL - 105 IS - 7 SP - 640 EP - 644 PB - Carl Hanser CY - München AN - OPUS4-31084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, B. A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW JF - Applied Sciences N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature Ms since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Austenite-to-martensite transformation KW - Neutron radiography KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) KW - Debye–Waller factor KW - Low transformation temperature (LTT) steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538016 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 SP - 10886 PB - MDPI CY - Basel AN - OPUS4-53801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW JF - Novel Approaches for Nondestructive Testing and Evaluation N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature M s since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Neutron radiography KW - Debye–Waller factor KW - Austenite-to-martensite transformation KW - Low transformation temperature (LTT) steel KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559077 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 PB - MDPI AN - OPUS4-55907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Solórzano, E. A1 - Beyer, Katrin A1 - Kannengießer, Thomas T1 - The advantage of using in-situ methods for studying hydrogen mass transport: Neutron radiography vs. carrier gas hot extraction JF - International journal of hydrogen energy N2 - Neutron radiography (NR) is compared with the commonly used carrier gas hot extraction (CGHE) technique. We performed isothermal hydrogen effusion experiments at 623 K to study the mass transport kinetics. The investigated material was technical iron. The quantification of the hydrogen mass flow is done for NR by using concentration standards. The temporal hydrogen concentration evolution in the sample coincides well for both methods, i.e. NR and CGHE, and is in good agreement with literature. The advantages of the NR method are the non-destructive nature of measuring and the in-situ determination of hydrogen concentrations with high spatial and temporal resolution. Remaining hydrogen inside the sample can be identified directly by the NR method. KW - Hydrogen diffusion KW - In-situ KW - Neutron radiography KW - Carrier gas hot extraction KW - Imaging PY - 2013 DO - https://doi.org/10.1016/j.ijhydene.2013.08.145 SN - 0360-3199 VL - 38 IS - 34 SP - 14725 EP - 14729 PB - Elsevier CY - Oxford AN - OPUS4-29413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Zhang, B. A1 - Solórzano, E. A1 - Garcia-Moreno, F. T1 - Note: X-ray radiography for measuring chemical diffusion in metallic melts JF - Review of scientific instruments N2 - A x-ray radioscopy technique for measuring in situ chemical diffusion coefficients in metallic melts is presented. The long-capillary diffusion measurement method is combined with imaging techniques using microfocus tubes and flat panel detectors in order to visualize and quantitatively analyze diffusive mixing of two melts of different chemical composition. The interdiffusion coefficient as function of temperature and time is obtained by applying Fick’s diffusion laws. Tracking the time dependence of the mean square penetration depth of the mixing process allows to detect changes in the mass transport caused by convective flow. The possibility to sort out convective mass transport contributions from analysis enhances significantly the accuracy compared to the conventional long-capillary diffusion measurement method with postmortem analysis. The performance of this novel diffusion measurement method with x-ray radiography technique is demonstrated by a diffusion experiment in an Al-Ni melt. KW - Diffusion KW - Metal KW - Aluminium KW - Nickel KW - Melt KW - In-situ KW - Radiography KW - Capillary KW - Aluminium-alloys KW - Chemical analysis KW - Chemical interdiffusion KW - Convection KW - Liquid alloys KW - Mass transfer KW - Nickel alloys KW - X-ray apparatus PY - 2010 DO - https://doi.org/10.1063/1.3427256 SN - 0034-6748 SN - 1089-7623 VL - 81 SP - 056104-1 - 056104-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuskin, D. A1 - Kargl, F. A1 - Griesche, Axel A1 - Stenzel, C. A1 - Mitschke, D. A1 - Bräuer, D. A1 - Meyer, A. T1 - MSL compatible isothermal furnace insert for high temperature shear-cell diffusion experiments JF - Journal of physics / Conference series N2 - For long-time diffusion experiments shear-cell techniques offer more favourable terms than the traditional long capillary techniques. Here, we present a further developed shear-cell that enables the measurement of diffusion coefficients up to temperatures of 1600 °C. Hence, diffusion experiments can be carried out at temperatures not accessible until now by conventional capillary or shear-cell techniques. The modified shear-cell, which can contain up to six samples of a total length of 90mm and a diameter of 1.5 mm, is built of 30 shear discs of 3mm thickness each. It is operated in an isothermal furnace insert which can be accommodated in the Materials Science Laboratory of the International Space Station. This provides the opportunity that the shear-cell can be applied to microgravity and to ground-based experiments, respectively. The heater insert with an overall length of 518mm and a diameter of 210mm consists of four heating zones with a total power of 3.5 kW. Temperature homogeneity along the graphite sample compartment is better than 2K at 1600°C. Details of the new design are discussed and results of first successfully performed heating and shearing cycles are presented. KW - Microgravity KW - Diffusion KW - Shear cell KW - Melt KW - Alloy PY - 2011 DO - https://doi.org/10.1088/1742-6596/327/1/012053 SN - 1742-6588 SN - 1742-6596 VL - 327 IS - 012053 SP - 1 EP - 8 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-24994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging JF - Journal of Physics: Conference Series N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586268 DO - https://doi.org/10.1088/1742-6596/2605/1/012026 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kargl, F. A1 - Engelhardt, M. A1 - Yang, F. A1 - Weis, H. A1 - Schmakat, P. A1 - Schillinger, B. A1 - Griesche, Axel A1 - Meyer, A. T1 - In situ studies of mass transport in liquid alloys by means of neutron radiography JF - Journal of physics / Condensed matter N2 - When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al2O3 based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al68.6Cu13.8Ag17.6 at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. KW - Neutron radiography KW - Diffusion KW - Liquid alloys KW - Shear cell PY - 2011 DO - https://doi.org/10.1088/0953-8984/23/25/254201 SN - 0953-8984 SN - 1361-648X VL - 23 IS - 25 SP - 254201-1 EP - 254201-8 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-23854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konadu, D. S. A1 - Pistorius, P. G. H. A1 - Du Toit, M. A1 - Griesche, Axel T1 - Solidification cracking susceptibility of ferritic stainless steels using Modified Varestraint Transvarestraint (MVT) method JF - Sadhana - Academy proceedings in engineering sciences N2 - The Modified Varestraint Transvarestraint (MVT) test was used to investigate the solidification cracking susceptibility of an unstabilised, a Nb-stabilised and two (Ti + Nb) dual-stabilised ferritic stainless steels. Two different welding speeds of 6 and 3 mm/s using autogenous gas tungsten arc welding were employed. At the welding speed of 6 mm/s, the high-content (Ti + Nb) steel was resistant and the Nb-stabilised steel was marginally susceptible to solidification cracking. At the welding speed of 3 mm/s, the Nb and the high (Ti + Nb) steels were found to be marginally susceptible to solidification cracking while the unstabilised and low-content (Ti + Nb) grades were resistant to solidification cracking. The weld metal microstructures transverse to the welding direction revealed columnar grains in all the samples for both welding speeds. The ferritic stainless steels were generally resistant to solidification cracking, except the Nb-stabilised steel, which was marginally susceptible to solidification cracking. KW - Susceptibility KW - Modified Varestraint Transvarestraint KW - Solidification cracking KW - Ferritic stainless steel KW - Microstructure KW - Welding PY - 2019 DO - https://doi.org/10.1007/s12046-019-1175-0 SN - 0973-7677 VL - 44 IS - 9 SP - Article Number: UNSP 194 PB - Springer AN - OPUS4-48938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging JF - Advanced engineering materials N2 - While the problem of the identification of mechanisms of hydrogen assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. In this work, we show how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in literature, but this time using a non-destructive technique, we show that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, we deduce that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. We show that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and we deduce that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - Hydrogen embrittlement KW - Synchrotron radiation KW - X-ray refraction KW - Computed tomography KW - Microcracking PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542811 DO - https://doi.org/10.1002/adem.202101287 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Griesche, Axel T1 - Hydrogen in Metals Visualized by Neutron Imaging JF - Corrosion N2 - Neutron cameras allow visualizing hydrogen distributions with radiographic or tomographic imaging methods in iron (and steel) and many other metals. The necessary contrast between hydrogen and these metals stems from the high difference in the total neutron cross section of both elements. This allows, e.g., the in situ measurement of hydrogen mass flow inside cm thick metal samples with a temporal resolution of at best 10 s using neutron radiography as well as the quantitative measurement of hydrogen accumulations, e.g., at the crack’s inner surfaces in hydrogen embrittled iron samples with neutron tomography. This new quality of the information on a micrometer scale allows new insights for the analysis of hydrogen-assisted damage mechanisms. Further, this method is non-destructive and provides local information in situ and in three dimensions with a spatial resolution of 20 μm - 30 μm. In this contribution, we give a short historical overview of neutron imaging and show examples that demonstrate the spatial and temporal resolution of the neutron radiography and tomography methods in order to visualize and quantify hydrogen accumulations, absorption processes, and diffusion. The examples are taken from the works of researchers dealing with titanium, palladium, zirconium, and iron or steel. More detailed descriptions of the experimental and analytic procedures are given for hydrogen detection using radiography and tomography on iron and steel samples. KW - Hydrogen assisted cracking KW - Neutron imaging PY - 2019 DO - https://doi.org/10.5006/3104 SN - 0010-9312 VL - 75 IS - 8 SP - 903 EP - 910 PB - NACE International AN - OPUS4-48775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Hannemann, Andreas A1 - Schultz, Michael A1 - Griesche, Axel T1 - On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens JF - Journal of Imaging N2 - Hydrogen-charged supermartensitic steel samples were used to systematically investigate imaging artifacts in neutron radiography. Cadmium stencils were placed around the samples to shield the scintillator from excessive neutron radiation and to investigate the influence of the backlight effect. The contribution of scattered neutrons to the total detected intensity was investigated by additionally varying the sample-detector distance and applying a functional correlation between distance and intensity. Furthermore, the influence of the surface roughness on the edge effect due to refraction was investigated. KW - Refraction KW - Neutron imaging KW - Hydrogen KW - Supermartensitic steel KW - Backlight KW - Scattering PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506587 DO - https://doi.org/10.3390/jimaging6040022 VL - 6 IS - 22 SP - 1 EP - 10 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengiesser, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. KW - Duplex stainless steels KW - In situ measurement KW - LIBS KW - GMAW PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597940 DO - https://doi.org/10.1016/j.sab.2024.106899 SN - 0584-8547 VL - 214 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Spatially resolved EDS, XRF and LIBS measurements of the chemical composition of duplex stainless steel welds: A comparison of methods JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - Duplex stainless steels (DSS) are used in all industries where corrosion problems play a major role. Examples include the chemical industry, the food industry and shipping industries. DSS have a balanced phase ratio of ferrite (α) and austenite (γ). Unlike single-phase stainless steels, DSS combine the advantages of these and can therefore fit many industry requirements, such as weight saving or high mechanical strength. When these steels are welded, alloying elements can burn off and condense as thin layers on cold surface regions. This loss of chemical elements can lead to changes in the microstructure. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), chemical element distributions were visualized. The results were compared with those of conventional measurement methods, such as energy dispersive X-ray analysis (EDS) and X-ray fluorescence analysis (XRF), and the results from LIBS could be validated. LIBS is suitable as a fast, straightforward measurement method for producing line scans along the weld seam and provides spatially resolved information on accumulation phenomena of burned off alloying elements. LIBS is very well suited for the detection of sub-surface elements due to the exclusively superficial ablation of the material. In addition, the measurement method has been calibrated so that quantitative statements about element concentrations can also be made. T2 - EMSLIBS 2021 CY - Online Meeting DA - 25.11.2021 KW - LIBS KW - TIG welding KW - Duplex stainless steel KW - XRF KW - EDS PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106439 SN - 0584-8547 VL - 193 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) JF - Forces in mechanics N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542026 DO - https://doi.org/10.1016/j.finmec.2021.100063 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) JF - IOP Conference Series: Materials Science and Engineering N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571308 DO - https://doi.org/10.1088/1757-899X/1274/1/012018 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - In situ measurement of hydrogen concentration in steel using laser‑induced breakdown spectroscopy (LIBS) JF - Welding in the World N2 - The ISO 3690 standard “Determination of hydrogen content in arc weld metal” requires a thermal activation of the diffusible hydrogen in a piece of weld metal for the subsequent ex situ concentration measurement by carrier gas hot extraction CGHE or thermal desorption spectroscopy (TCD). Laser-induced breakdown spectroscopy (LIBS) offers a time and spatially resolved, almost non-destructive, in situ measurement of hydrogen at surfaces without sample preparation. We measured hydrogen in steels, which were charged either electrochemically or by high-pressure hydrogen gas, and compared the results. Further, the feasibility of quantitative hydrogen line scan measurements with LIBS was demonstrated by measuring hydrogen at water jet cut surfaces. The hydrogen concentrations measured with the help of LIBS were compared with CGHE measurements. It was observed that hydrogen can be reliably measured with LIBS for concentrations larger than 2 wt.-ppm. The maximum hydrogen concentration achieved using electrochemical charging was 85.1 ppm. The results show that LIBS is a promising technique for time- and spatially resolved measurements of hydrogen in steels. T2 - IIW Annual Assembly 2023 CY - Singapore KW - LIBS KW - Hydrogen measurement KW - Welding KW - Stainless steel KW - Diffusible hydrogen PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593664 DO - https://doi.org/10.1007/s40194-023-01677-2 SP - 1 EP - 9 PB - Springer AN - OPUS4-59366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Pfretzschner, Beate A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Neuwirth, T. A1 - Schulz, M. A1 - Griesche, Axel T1 - High-resolution Bragg-edge neutron radiography detects grain morphology in PBF-LB/M IN718 JF - Materialia N2 - One of the main advantages of metal additive manufacturing (MAM) techniques is their ability to produce components with site-specific microstructural features. Nevertheless, microstructural defects and lack of repeatability are still major concerns in MAM. In this study, a laser powder bed fusion (PBF-LB/M) IN718 material, produced using two different scan length vectors, is investigated using Bragg-edge neutron 2D imaging (BENI) combined with electron backscatter diffraction (EBSD) analysis. BENI is able to detect, on a macroscopic scale, process-induced changes in texture in a large field of view covering the entire sample (20×80 mm2). In addition, high-resolution BENI (HR-BENI), with a pixel size of 12.8 µm, provides a micro-scale examination of the local variations of texture and grain morphology, otherwise undistinguishable using the standard resolution. As such, HR-BENI offers a straightforward and detailed way of screening the integrity of MAM parts at cm-length scales. KW - Bragg-edge neutron 2D imaging (BENI) KW - Metal additive manufacturing (MAM) KW - IN718 PBF-LB/M KW - Crystallographic texture control KW - Electron backscatter diffraction (EBSD) PY - 2023 DO - https://doi.org/10.1016/j.mtla.2023.101827 SN - 2589-1529 VL - 30 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-57819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Jacobsen, Lars A1 - Griesche, Axel A1 - Michalik, Katarzyna A1 - Mory, David A1 - Kannengießer, Thomas T1 - In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding.Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence ofweld defects and changes in the chemical composition in theweld pool or in the two-phase regionwhere solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and MnII characteristicemissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observedwith the termination of thewelding plumedue to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels,Mnaccumulations on both sides of theweld could be detected between the heat affected zone (HAZ) and the base material. T2 - th International Conference on Laser-Induced Breakdown Spectroscopy (LIBS) CY - Chamonix-Mont-Blanc, France DA - 12.09.2016 KW - LIBS KW - TIG KW - Welding KW - Austenitic KW - Stainless steels KW - Chemical composition KW - In situ KW - Measurement PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S0584854717301064 DO - https://doi.org/10.1016/j.sab.2017.11.012 SN - 0584-8547 VL - 139 SP - 50 EP - 56 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-43122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Cieslik, K. A1 - Mory, D. A1 - Griesche, Axel T1 - In situ chemical composition analysis of a tungsten-inert-gas austenitic stainless steel weld measured by laser-induced breakdown spectroscopy JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The chemical composition of a weld metal determines the resulting solidification mode of stainless steel and the consequent weld metal quality. In this work tungsten inert gas (TIG) welding of EN grade 1.4435 austenitic stainless steel was monitored using laser-induced breakdown spectroscopy (LIBS) for the in situ measurement of chemical composition changes. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such quality control loop. LIBS was used to investigate in situ the monitoring of metal vaporization during TIG welding. We found Mn vapor formation above the weld pool and subsequent condensation of Mn on the weld metal surface using LIBS. Post-weld line scans were conducted by LIBS on various welds produced with different welding currents. Local changes of Ni and Mn were observed at higher welding currents. The results are in good agreement with the literature and proved that LIBS can be used in situ to inspect the TIG welding process. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czechia DA - 08.09.2019 KW - LIBS KW - Welding KW - Austenitic stainless steel KW - Metal vapor KW - In situ measurement PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105826 SN - 0584-8547 VL - 167 SP - 105826 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-50582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy JF - IOP conference series: Materials science and engineering N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511595 DO - https://doi.org/10.1088/1757-899X/882/1/012023 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -