TY - GEN A1 - Griesche, Axel A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Calzada, E. T1 - Hydrogen diffusion measurements in steels using neutron imaging N2 - Revealing hydrogen embrittlement mechanisms in steels is of great interest to scientists and engineers. Neutron radiography makes it possible to measure in-situ hydrogen diffusion with high spatial and temporal resolution at concentrations as low as 20 ppm. We compare hydrogen-charged specimens with hydrogen-free reference specimens and use calibration standards to normalize the hydrogen concentrations. This allows quantitative tracking of the hydrogen concentration evolution as a function of time, space and temperature. Furthermore, a view into the material with 'neutron eyes' facilitates the detection of cavities that contain molecular hydrogen. KW - Hydrogen KW - Diffusion KW - Steel KW - Neutron radiography PY - 2012 UR - http://cdn.frm2.tum.de/fileadmin/stuff/information/documents/annualReports/Annual_Report_2011_online_version.pdf SP - 50 EP - 51 AN - OPUS4-25981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Kardjilov, N. ED - Somerday, B. P. ED - Sofronis, P. T1 - Measurement of hydrogen distributions in metals by neutron radiography and tomography N2 - Neutron imaging has become a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Hydrogen mass flow can be measured inside cm thick Steel samples with 10 s temporal resolution. Hydrogen accumulations around craclcs in embrittled iron samples can be visualized three-dimensionally. The gas pressure of hydrogen in crack cavities has been measured to be in the ränge of 5 MPa to 15 MPa. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g., of hydrogen blistering. Further, this method is nondestructive and provides local information in situ and in three dimensions with a spatial resolution of 20 µm - 30 µm. T2 - International Hydrogen Conference 2016 CY - Jackson Lake Lodge, Wyoming, USA DA - 11.09.2017 KW - Hydrogen KW - Neutron imaging KW - Neutron radiography KW - Neutron tomography PY - 2017 SN - 978-0-7918-6138-7 DO - https://doi.org/10.1115/1.861387_ch46 SP - 416 EP - 422 AN - OPUS4-42505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -