TY - JOUR A1 - Boateng, Francis Twumasi A1 - Ewert, Uwe A1 - Kannengießer, Thomas A1 - Zscherpel, Uwe A1 - Griesche, Axel A1 - Kromm, Arne A1 - Hohendorf, Stephan A1 - Redmer, Bernard T1 - Real-time radiography for observation of crack growth during GTA (Gas Tungsten Arc) welding N2 - In situ crack detection in the mushy zone and the solid weld of a gas tungsten arc (GTA) weld using X-ray imaging during welding is a new research area for NDT inspection. Usually, NDT flaw detection is done after the complete solidification of the weld seam. In this paper, we present the use of real-time radiography with a minifocus X-ray source (YXLON X-ray tube Y.TU 225-D04) and a 75μm pixel size digital detector array (Dexela 1512) for the acquisition of 2D radiographic images by a sequence of exposures with time intervals of 80 ms for hot crack detection during single pass bead-on-plate GTA welding of 3 mm thick plates of aluminium alloy AlMgSi (6060). An analysis of the crack distribution in the weld sample is conducted from the acquired 2D radiographs and its corresponding 3D volumetric reconstruction achieved by linear coplanar digital laminography. This in situ approach opens new possibilities in the field of hot crack research by having the direct information of both the crack initiation and growth and its correlation to the welding parameters. KW - Hot cracking KW - Radiography KW - GTA welding KW - Aluminium alloys KW - Real-time operation PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0351-7 SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 5 SP - 931 EP - 937 AN - OPUS4-37128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Griesche, Axel A1 - Große, M. A1 - Schillinger, B. ED - Fritzsche, H. ED - Huot, J. ED - Fruchart, D. T1 - Neutron imaging N2 - Neutron imaging methods are appropriate to investigate hydrogen distributions in several metallic systems. The large total neutron cross section of hydrogen compared to those of elements or isotopes, respectively, in usual structural materials like steels or zirconium alloys allows the detection even of small amounts of hydrogen in such materials. The dependence of the total macroscopic neutron cross section of the sample or component on the hydrogen concentration can be determined experimentally by means of calibration specimens with known hydrogen concentrations. Such a calibration allows for a full quantitative determination of the local hydrogen concentration with a spatial resolution better than 20 μm. Because neutron radiography is fast and non-destructive, in situ investigations of time-dependent processes like hydrogen absorption and release or hydrogen bulk diffusion can be performed. This chapter gives an introduction into the main neutron imaging methods, radiography and tomography, and gives as examples results of neutron imaging investigations of hydrogen in different steels and in zirconium alloys,respectively. KW - Neutron imaging KW - Neutron radiography KW - Hydrogen PY - 2016 SN - 978-3-319-22792-4 SN - 978-3-319-22791-7 U6 - https://doi.org/10.1007/978-3-319-22792-4_7 SN - 1868-0380 SN - 1868-0372 SP - Chapter 7, 193 EP - 225 PB - Springer Nature CY - Zurich, Switzerland AN - OPUS4-36365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Schulz, M. A1 - Kardjilov, N. T1 - Measurement of hydrogen distributions in metals by neutron radiography and tomography N2 - In recent years, the optimization of the imaging stations at research reactors and especially the further development of the neutron detectors allowed the measurement of hydrogen distributions with increasing spatial and temporal resolution at lower detection limits at the same time. Hydrogen has compared to iron a high total neutron cross section, which allows with basic radiographic methods the visualization of hydrogen in two and three dimensions inside the microstructure of components. This enables the in situ measuring of hydrogen mass flows inside cm thick steel samples with a temporal resolution of 20 s as well as the quantitative measurement of hydrogen accumulations at the crack’s inner surfaces in hydrogen embrittled iron samples. For the first time, we detected directly gaseous hydrogen in the crack cavities and we could measure the gas pressure. This new quality of the information on a micrometer scale allows new insights for the analysis of damage mechanisms, e.g. of hydrogen embrittlement. Further, this method is non-destructive and provides local information in situ and in three dimensions with a spatial resolution of 20-30 µm, which is not accessible with common methods as e.g. thermal desorption spectroscopy. In this contribution, we show examples that demonstrate the spatial and temporal resolution of the neutron radiography and tomography method in order to visualize and quantify hydrogen accumulations at cracks. The measurements were performed at the research reactor BER II of HZB in Berlin and at the FRM II reactor of the neutron source Heinz Maier-Leibnitz in Garching. T2 - 2016 International Hydrogen Conference CY - Moran, Wyoming, USA DA - 11.09.2016 KW - Neutron imaging KW - Hydrogen embrittlement KW - Neutron tomography KW - Neutron radiography PY - 2016 AN - OPUS4-37700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Boateng, Francis A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Real-time X-ray Radiography for Hot Crack Detection during Welding N2 - Fast digital radiography was used to observe the crack development during single pass bead-on-plate gas tungsten arc welding with a minifocus X-ray source and a digital detector array with 75-micrometer pixel size. The sample material were 5 mm thick AlMgSi plates. An acquisition rate of 12 frames per second and an exposure time of 40 ms per frame were used for real-time observation of the hot crack propagation during welding. The basic spatial resolution of the images is about 80 µm. A 3D laminographic reconstruction of the acquired 2D radiographic images gives access to the volumetric extent of the cracks in the welded sample. The parallel use of a high-speed camera during welding allows the real-time inspection of surface cracks. The development of surface cracks was compared with the crack’s distribution in the sample volume and these results were correlated to the used welding parameters. T2 - MS&T 2016 CY - Salt Lake City, Utah, USA DA - 23.10.2016 KW - X-ray radiography KW - Welding KW - Hot crack KW - X-ray imaging KW - Laminography PY - 2016 AN - OPUS4-38069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas T1 - Imaging of Hydrogen in Steels with Neutrons N2 - Cold neutrons are predominantly scattered at hydrogen when penetrating hydrogen-charged samples, resulting in a high image contrast between hydrogen and e.g. iron. The used radiographic set-ups consist of a neutron source, state-of-the-art scintillator screens and digital cameras. This allows monitoring diffusive hydrogen fluxes two-dimensionally with 20s temporal resolution. Such hydrogen fluxes can be quantified by using standards with known hydrogen content and similar sample thickness. Neutron tomography generates three-dimensional models of the hydrogen distribution in steel. Such models gain new insight for damage analysis by showing the hydrogen accumulations around cracks and by enabling the hydrogen gas pressure estimation inside cracks. The capabilities and limitations, as well as perspectives of this method will be discussed and illustrated with help of selected examples. T2 - MS&T 2016 CY - Salt Lake City, Utah, USA DA - 23.10.2016 KW - Hydrogen embrittlement KW - Neutron imaging KW - Neutron radiography KW - Neutron tomography PY - 2016 AN - OPUS4-38066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - 3D Crack analysis in hydrogen charged lean duplex stainless steel with synchrotron refraction CT N2 - Hydrogen in metals can cause a degradation of the mechanical properties, the so-called hydrogen embrittlement. In combination with internal stresses, hydrogen assisted cracking (HAC) can occur. This phenomenon is not completely understood yet. To better characterise the cracking behaviour, it is important to gain information about the evolution of the 3D crack network. For this purpose samples of lean duplex stainless steel were loaded with hydrogen by means of electrochemical charging and investigated by means of synchrotron refraction CT and SEM fractography after uniaxial tensile loading. Synchrotron refraction CT is an analyser-based imaging (ABI) technique. It uses a Si (111) single crystal as analyser, which is placed into the beam path between sample and detector. According to Bragg’s law only incident x-rays within a narrow range around the Bragg-angle are diffracted from the analyser into the detector. Hence, the analyser acts as an angular filter for the transmitted beam. This filtering allows to turn the refraction and scattering of x-rays into image contrast. Refraction occurs at all interfaces, where the density of the material changes and is more sensitive to density changes than the attenuation. Therefore, it is possible to detect smaller cracks than with classical x-ray imaging techniques, like CT, with comparable spacial resolution. It also visualises the 3D structure of the cracks and gains quantitative information about their morphology and distribution. Since cracks introduced by HAC are usually very small and have a small opening displacement, synchrotron refraction CT is expected to be well suited for imaging this cracking mechanism and can be a valuable tool to characterise the formation and the evolution of a 3D crack network. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - X-ray refraction KW - Computed tomography KW - Hydrogen assisted cracking KW - Duplex stainless steel PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-366481 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.4.B.3, 1 EP - 9 AN - OPUS4-36648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -