TY - JOUR A1 - Serrano Munoz, Itziar A1 - Pfretzschner, Beate A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Neuwirth, T. A1 - Schulz, M. A1 - Griesche, Axel T1 - High-resolution Bragg-edge neutron radiography detects grain morphology in PBF-LB/M IN718 N2 - One of the main advantages of metal additive manufacturing (MAM) techniques is their ability to produce components with site-specific microstructural features. Nevertheless, microstructural defects and lack of repeatability are still major concerns in MAM. In this study, a laser powder bed fusion (PBF-LB/M) IN718 material, produced using two different scan length vectors, is investigated using Bragg-edge neutron 2D imaging (BENI) combined with electron backscatter diffraction (EBSD) analysis. BENI is able to detect, on a macroscopic scale, process-induced changes in texture in a large field of view covering the entire sample (20×80 mm2). In addition, high-resolution BENI (HR-BENI), with a pixel size of 12.8 µm, provides a micro-scale examination of the local variations of texture and grain morphology, otherwise undistinguishable using the standard resolution. As such, HR-BENI offers a straightforward and detailed way of screening the integrity of MAM parts at cm-length scales. KW - Bragg-edge neutron 2D imaging (BENI) KW - Metal additive manufacturing (MAM) KW - IN718 PBF-LB/M KW - Crystallographic texture control KW - Electron backscatter diffraction (EBSD) PY - 2023 DO - https://doi.org/10.1016/j.mtla.2023.101827 SN - 2589-1529 VL - 30 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-57819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Griesche, Axel T1 - Hydrogen in Metals Visualized by Neutron Imaging N2 - Neutron cameras allow visualizing hydrogen distributions with radiographic or tomographic imaging methods in iron (and steel) and many other metals. The necessary contrast between hydrogen and these metals stems from the high difference in the total neutron cross section of both elements. This allows, e.g., the in situ measurement of hydrogen mass flow inside cm thick metal samples with a temporal resolution of at best 10 s using neutron radiography as well as the quantitative measurement of hydrogen accumulations, e.g., at the crack’s inner surfaces in hydrogen embrittled iron samples with neutron tomography. This new quality of the information on a micrometer scale allows new insights for the analysis of hydrogen-assisted damage mechanisms. Further, this method is non-destructive and provides local information in situ and in three dimensions with a spatial resolution of 20 μm - 30 μm. In this contribution, we give a short historical overview of neutron imaging and show examples that demonstrate the spatial and temporal resolution of the neutron radiography and tomography methods in order to visualize and quantify hydrogen accumulations, absorption processes, and diffusion. The examples are taken from the works of researchers dealing with titanium, palladium, zirconium, and iron or steel. More detailed descriptions of the experimental and analytic procedures are given for hydrogen detection using radiography and tomography on iron and steel samples. KW - Hydrogen assisted cracking KW - Neutron imaging PY - 2019 DO - https://doi.org/10.5006/3104 SN - 0010-9312 VL - 75 IS - 8 SP - 903 EP - 910 PB - NACE International AN - OPUS4-48775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. A1 - Kannengießer, Thomas T1 - Imaging of hydrogen in steels using neutrons N2 - We investigated the hydrogen distribution spatially and temporally in technical iron at room temperature. Samples were charged electrochemically and subsequently analysed by means of neutron radiography and tomography. The radiographic images allowed for a time-resolved analysis of hydrogen fluxes. The three-dimensional distribution of hydrogen measured by neutron tomography delivered valuable information for the damage analysis of hydrogen-induced cracks. For the first time hydrogen concentration gradients inside the material could be detect directly together with the cracks. The neutron radiography and tomography results were gained at the Research Reactor BER II of the HZB in Berlin. KW - Hydrogen embrittlement KW - Hydrogen diffusion KW - Neutron tomography KW - Blister PY - 2014 DO - https://doi.org/10.3139/146.111043 SN - 1862-5282 VL - 105 IS - 7 SP - 640 EP - 644 PB - Carl Hanser CY - München AN - OPUS4-31084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor B. A1 - Griesche, Axel A1 - Kannengiesser, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. KW - Duplex stainless steels KW - In situ measurement KW - LIBS KW - GMAW PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597940 DO - https://doi.org/10.1016/j.sab.2024.106899 SN - 0584-8547 VL - 214 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Cieslik, K. A1 - Mory, D. A1 - Griesche, Axel T1 - In situ chemical composition analysis of a tungsten-inert-gas austenitic stainless steel weld measured by laser-induced breakdown spectroscopy N2 - The chemical composition of a weld metal determines the resulting solidification mode of stainless steel and the consequent weld metal quality. In this work tungsten inert gas (TIG) welding of EN grade 1.4435 austenitic stainless steel was monitored using laser-induced breakdown spectroscopy (LIBS) for the in situ measurement of chemical composition changes. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such quality control loop. LIBS was used to investigate in situ the monitoring of metal vaporization during TIG welding. We found Mn vapor formation above the weld pool and subsequent condensation of Mn on the weld metal surface using LIBS. Post-weld line scans were conducted by LIBS on various welds produced with different welding currents. Local changes of Ni and Mn were observed at higher welding currents. The results are in good agreement with the literature and proved that LIBS can be used in situ to inspect the TIG welding process. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czechia DA - 08.09.2019 KW - LIBS KW - Welding KW - Austenitic stainless steel KW - Metal vapor KW - In situ measurement PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105826 SN - 0584-8547 VL - 167 SP - 105826 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-50582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542026 DO - https://doi.org/10.1016/j.finmec.2021.100063 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Jacobsen, Lars A1 - Griesche, Axel A1 - Michalik, Katarzyna A1 - Mory, David A1 - Kannengießer, Thomas T1 - In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding N2 - A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding.Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence ofweld defects and changes in the chemical composition in theweld pool or in the two-phase regionwhere solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and MnII characteristicemissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observedwith the termination of thewelding plumedue to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels,Mnaccumulations on both sides of theweld could be detected between the heat affected zone (HAZ) and the base material. T2 - th International Conference on Laser-Induced Breakdown Spectroscopy (LIBS) CY - Chamonix-Mont-Blanc, France DA - 12.09.2016 KW - LIBS KW - TIG KW - Welding KW - Austenitic KW - Stainless steels KW - Chemical composition KW - In situ KW - Measurement PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S0584854717301064 DO - https://doi.org/10.1016/j.sab.2017.11.012 SN - 0584-8547 VL - 139 SP - 50 EP - 56 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-43122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - In situ measurement of hydrogen concentration in steel using laser‑induced breakdown spectroscopy (LIBS) N2 - The ISO 3690 standard “Determination of hydrogen content in arc weld metal” requires a thermal activation of the diffusible hydrogen in a piece of weld metal for the subsequent ex situ concentration measurement by carrier gas hot extraction CGHE or thermal desorption spectroscopy (TCD). Laser-induced breakdown spectroscopy (LIBS) offers a time and spatially resolved, almost non-destructive, in situ measurement of hydrogen at surfaces without sample preparation. We measured hydrogen in steels, which were charged either electrochemically or by high-pressure hydrogen gas, and compared the results. Further, the feasibility of quantitative hydrogen line scan measurements with LIBS was demonstrated by measuring hydrogen at water jet cut surfaces. The hydrogen concentrations measured with the help of LIBS were compared with CGHE measurements. It was observed that hydrogen can be reliably measured with LIBS for concentrations larger than 2 wt.-ppm. The maximum hydrogen concentration achieved using electrochemical charging was 85.1 ppm. The results show that LIBS is a promising technique for time- and spatially resolved measurements of hydrogen in steels. T2 - IIW Annual Assembly 2023 CY - Singapore KW - LIBS KW - Hydrogen measurement KW - Welding KW - Stainless steel KW - Diffusible hydrogen PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593664 DO - https://doi.org/10.1007/s40194-023-01677-2 SP - 1 EP - 9 PB - Springer AN - OPUS4-59366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kargl, F. A1 - Engelhardt, M. A1 - Yang, F. A1 - Weis, H. A1 - Schmakat, P. A1 - Schillinger, B. A1 - Griesche, Axel A1 - Meyer, A. T1 - In situ studies of mass transport in liquid alloys by means of neutron radiography N2 - When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al2O3 based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al68.6Cu13.8Ag17.6 at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. KW - Neutron radiography KW - Diffusion KW - Liquid alloys KW - Shear cell PY - 2011 DO - https://doi.org/10.1088/0953-8984/23/25/254201 SN - 0953-8984 SN - 1361-648X VL - 23 IS - 25 SP - 254201-1 EP - 254201-8 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-23854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gollnow, C. A1 - Griesche, Axel A1 - Weidemann, Jens A1 - Kannengießer, Thomas T1 - Influence of external loads on a characteristic angle between grains and solidus line as an indicator for hot cracking susceptibility during GTA welding N2 - A long list of criteria determining the hot cracking susceptibility already exists. A main influence on solidification cracking can result from the design of the welded construction, i.e. from the influence of external loads. Using the Controlled Tensile Weldability (CTW) test, an external load hot cracking test, the influence of constant pre-load and different extension rates on the solidification cracking behavior of GTA (Gas Tungsten Arc) welds in an austenitic (AISI 309) and a ferritic (AISI 441) steel were investigated. Compared to specimens welded allowing free shrinkage and welded with an applied constant tensile pre-load, the specimens welded during the application of increasing tensile load show solidification cracks. In the weld seams, a characteristic angle α between the predominantly columnar grains and the fusion line can be observed. Specimens showing solidification cracks show a significantly larger angle α compared to the crack-free specimens. Based on these observations, the characteristic angle α is proposed as a new hot cracking criterion. KW - Hot cracking KW - External load test KW - Component design KW - Crack criterion KW - Grain growth PY - 2017 DO - https://doi.org/10.1016/j.jmatprotec.2016.08.013 VL - 239 SP - 172 EP - 177 PB - Elsevier AN - OPUS4-37278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -