TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511595 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Katrin A1 - Kannengießer, Thomas A1 - Griesche, Axel A1 - Schillinger, B. T1 - Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography N2 - The purpose of the present study was to show the feasibility of measuring hydrogen effusion in austenitic stainless steel (1.4301) using neutron radiography at the facility ANTARES of the research reactor FRM II of the Technische Universität München. This method is appropriate to measure in-situ hydrogen effusion for hydrogen concentrations as small as 20 ppmH. Experiments were carried out in the temperature range from room temperature up to 533 K. The measurement principle is based on the parallel comparison of electrochemically hydrogen charged specimen with hydrogen-free reference specimen at the same temperature. This allows the determination of the hydrogen concentration in the specimens as a function of time and temperature. Separate hot carrier gas extraction experiments using the same temperature–time profiles as the radiography experiments have been used to calibrate the grey values of the neutron transmission images into hydrogen concentrations. It can be stated that the hydrogen effusion correlates with the specimen temperature. KW - Hydrogen effusion KW - Austenitic stainless steels KW - Neutron radiography PY - 2011 U6 - https://doi.org/10.1016/j.nima.2011.02.010 SN - 0168-9002 SN - 0167-5087 VL - 651 IS - 1 SP - 211 EP - 215 PB - North-Holland CY - Amsterdam AN - OPUS4-23401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -