TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511595 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Treutler, K. A1 - Gehling, T. A1 - Eissel, A. A1 - Wesling, V. T1 - In situ Messung der chemischen Konzentration in der Schmelze während des WIG-Schweißens von Duplexstählen N2 - Duplexstähle besitzen ein zweiphasiges Gefüge und werden aufgrund ihrer verbesserten Schweißeignung gegenüber den Vollausteniten häufig im Anlagen- bzw. Apparatebau eingesetzt. Aufgrund der hohen Abkühlgeschwindigkeit und dem Abbrand von Legierungselementen kommt es zu einer Ferritisierung des Schweißguts und damit zu einer Degradation der mechanischen Eigenschaften. Zur Vorhersage des Phasenverhältnisses im Schweißgut wird das WRC1992-Diagramm genutzt. Dieses Diagramm zeigt einige Ungenauigkeiten und benötigt zur genaueren Vorhersage der Phasenverhältnisse eine Überarbeitung. Um den Einfluss einzelner Elemente auf das Schweißnahtmikrogefüge besser zu verstehen, wurden drahtförmige Schweißzusatzwerkstoffe mit dem Ferrit-Bildner Nb und dem Austenit-Bildner Cu beschichtet und für Schweißungen verwendet. Die Messmethode der Laser-induzierten Plasmaspektroskopie (LIBS) bietet hier eine gute Möglichkeit der in situ Überwachung der chemischen Konzentrationen, während des WIG-Schweißens von Duplexstählen. Die LIBS-Messergebnisse, konnten mit der Ferritnummer und der Schweißnahtmikrostruktur korreliert werden. T2 - Symposium Materialtechnik der TU Clausthal CY - Clausthal-Zellerfeld, Germany DA - 23.02.2023 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - Dduplex stainless steel KW - TIG welding PY - 2023 VL - 12 SP - 612 EP - 627 PB - Shaker CY - Aachen AN - OPUS4-57991 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542026 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-571308 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. T2 - EMSLIBS 2023 CY - Porto, Portugal KW - LIBS KW - In situ measurement KW - Welding KW - Duplex stainless steel PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597776 VL - 214 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-59777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengiesser, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. KW - Duplex stainless steels KW - In situ measurement KW - LIBS KW - GMAW PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597940 SN - 0584-8547 VL - 214 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Hannemann, Andreas A1 - Schultz, Michael A1 - Griesche, Axel T1 - On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens N2 - Hydrogen-charged supermartensitic steel samples were used to systematically investigate imaging artifacts in neutron radiography. Cadmium stencils were placed around the samples to shield the scintillator from excessive neutron radiation and to investigate the influence of the backlight effect. The contribution of scattered neutrons to the total detected intensity was investigated by additionally varying the sample-detector distance and applying a functional correlation between distance and intensity. Furthermore, the influence of the surface roughness on the edge effect due to refraction was investigated. KW - Refraction KW - Neutron imaging KW - Hydrogen KW - Supermartensitic steel KW - Backlight KW - Scattering PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506587 VL - 6 IS - 22 SP - 1 EP - 10 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - 3D Crack analysis in hydrogen charged lean duplex stainless steel with synchrotron refraction CT N2 - Hydrogen in metals can cause a degradation of the mechanical properties, the so-called hydrogen embrittlement. In combination with internal stresses, hydrogen assisted cracking (HAC) can occur. This phenomenon is not completely understood yet. To better characterise the cracking behaviour, it is important to gain information about the evolution of the 3D crack network. For this purpose samples of lean duplex stainless steel were loaded with hydrogen by means of electrochemical charging and investigated by means of synchrotron refraction CT and SEM fractography after uniaxial tensile loading. Synchrotron refraction CT is an analyser-based imaging (ABI) technique. It uses a Si (111) single crystal as analyser, which is placed into the beam path between sample and detector. According to Bragg’s law only incident x-rays within a narrow range around the Bragg-angle are diffracted from the analyser into the detector. Hence, the analyser acts as an angular filter for the transmitted beam. This filtering allows to turn the refraction and scattering of x-rays into image contrast. Refraction occurs at all interfaces, where the density of the material changes and is more sensitive to density changes than the attenuation. Therefore, it is possible to detect smaller cracks than with classical x-ray imaging techniques, like CT, with comparable spacial resolution. It also visualises the 3D structure of the cracks and gains quantitative information about their morphology and distribution. Since cracks introduced by HAC are usually very small and have a small opening displacement, synchrotron refraction CT is expected to be well suited for imaging this cracking mechanism and can be a valuable tool to characterise the formation and the evolution of a 3D crack network. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - X-ray refraction KW - Computed tomography KW - Hydrogen assisted cracking KW - Duplex stainless steel PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-366481 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.4.B.3, 1 EP - 9 AN - OPUS4-36648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking using analyser-based imaging N2 - To better understand the mechanism of hydrogen assisted cracking (HAC), it is important to investigate the 3D structure of the cracks non-destructively. Since, cracks introduced by HAC are usually very small, conventional x-ray imaging methods often lack the required spatial resolution. However, the detection of those cracks can be enhanced by taking advantage of refraction at interfaces within the sample. To image this refractive deflection we employ analyser based imaging (ABI). In this work we aim at proving the enhanced crack detection of ABI by investigating an alluminum alloy weld. T2 - BESSY User Meeting 2015 CY - Berlin, Germany DA - 09.12.2015 KW - X-ray refraction KW - Synchrotron KW - Analyser-based imaging KW - Hydrogen assisted cracking KW - Welding PY - 2015 AN - OPUS4-38278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking in metals using refraction enhanced synchrotron CT N2 - Hydrogen in metals can cause a degradation of the mechanical properties with possible subsequent hydrogen assisted cracking (HAC). Though, the mechanism of HAC is not completely understood yet and thus suitable methods for in situ investigations to characterise the crack formation are needed. X-ray computed tomography (CT) is a well-known tool for analysing these properties. However, the effective resolution of the detector system limits the detection of small defects by CT. Analyser based imaging (ABI) takes advantage of x-ray refraction at interfaces between volumes of different density, i.e. of cracks, pores, inclusions, etc., within the sample to detect defects smaller than the resolution of the detector system. In this study, measurements on an aluminium alloy weld showed that ABI allows us to resolve the 3D structure of cracks undetected by absorption based CT. Prospective investigations will analyse HAC in steels. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 2015-09-15 KW - Wasserstoffversprödung KW - Wasserstoffunterstützte Rissbildung KW - Röntgenrefraktion KW - CT KW - Hydrogen embrittlement (HE) KW - Hydrogen assisted cracking (HAC) KW - Aluminium alloy KW - X-ray refraction KW - Analyser based imaging KW - Computed tomography (CT) KW - Synchrotron radiation PY - 2015 SN - 1435-4934 SP - 1217 EP - 1224 AN - OPUS4-34287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -