TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging N2 - While the problem of the identification of mechanisms of hydrogen assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. In this work, we show how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in literature, but this time using a non-destructive technique, we show that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, we deduce that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. We show that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and we deduce that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - Hydrogen embrittlement KW - Synchrotron radiation KW - X-ray refraction KW - Computed tomography KW - Microcracking PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542811 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Spatially resolved EDS, XRF and LIBS measurements of the chemical composition of duplex stainless steel welds: A comparison of methods N2 - Duplex stainless steels (DSS) are used in all industries where corrosion problems play a major role. Examples include the chemical industry, the food industry and shipping industries. DSS have a balanced phase ratio of ferrite (α) and austenite (γ). Unlike single-phase stainless steels, DSS combine the advantages of these and can therefore fit many industry requirements, such as weight saving or high mechanical strength. When these steels are welded, alloying elements can burn off and condense as thin layers on cold surface regions. This loss of chemical elements can lead to changes in the microstructure. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), chemical element distributions were visualized. The results were compared with those of conventional measurement methods, such as energy dispersive X-ray analysis (EDS) and X-ray fluorescence analysis (XRF), and the results from LIBS could be validated. LIBS is suitable as a fast, straightforward measurement method for producing line scans along the weld seam and provides spatially resolved information on accumulation phenomena of burned off alloying elements. LIBS is very well suited for the detection of sub-surface elements due to the exclusively superficial ablation of the material. In addition, the measurement method has been calibrated so that quantitative statements about element concentrations can also be made. T2 - EMSLIBS 2021 CY - Online Meeting DA - 25.11.2021 KW - LIBS KW - TIG welding KW - Duplex stainless steel KW - XRF KW - EDS PY - 2022 U6 - https://doi.org/10.1016/j.sab.2022.106439 SN - 0584-8547 VL - 193 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -