TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-586268 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging N2 - While the problem of the identification of mechanisms of hydrogen assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. In this work, we show how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in literature, but this time using a non-destructive technique, we show that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, we deduce that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. We show that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and we deduce that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - Hydrogen embrittlement KW - Synchrotron radiation KW - X-ray refraction KW - Computed tomography KW - Microcracking PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542811 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Pfretzschner, Beate A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Neuwirth, T. A1 - Schulz, M. A1 - Griesche, Axel T1 - High-resolution Bragg-edge neutron radiography detects grain morphology in PBF-LB/M IN718 N2 - One of the main advantages of metal additive manufacturing (MAM) techniques is their ability to produce components with site-specific microstructural features. Nevertheless, microstructural defects and lack of repeatability are still major concerns in MAM. In this study, a laser powder bed fusion (PBF-LB/M) IN718 material, produced using two different scan length vectors, is investigated using Bragg-edge neutron 2D imaging (BENI) combined with electron backscatter diffraction (EBSD) analysis. BENI is able to detect, on a macroscopic scale, process-induced changes in texture in a large field of view covering the entire sample (20×80 mm2). In addition, high-resolution BENI (HR-BENI), with a pixel size of 12.8 µm, provides a micro-scale examination of the local variations of texture and grain morphology, otherwise undistinguishable using the standard resolution. As such, HR-BENI offers a straightforward and detailed way of screening the integrity of MAM parts at cm-length scales. KW - Bragg-edge neutron 2D imaging (BENI) KW - Metal additive manufacturing (MAM) KW - IN718 PBF-LB/M KW - Crystallographic texture control KW - Electron backscatter diffraction (EBSD) PY - 2023 U6 - https://doi.org/10.1016/j.mtla.2023.101827 SN - 2589-1529 VL - 30 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-57819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -