TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542026 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dabah, Eitan A1 - Griesche, Axel A1 - Beyer, Katrin A1 - Solórzano, E. A1 - Kannengießer, Thomas ED - Kannengießer, Thomas ED - Babu, S. S. ED - Komizo, Y. ED - Ramirez, A.J. T1 - In situ measurements of hydrogen diffusion in duplex stainless steels by neutron radiography N2 - Hydrogen embrittlement (HE) is a widely known phenomenon and under investigation already for more than a century. This phenomenon, though thoroughly studied, is not yet completely understood, and so far, there are several suggested mechanisms that try to explain the occurrence of HE. One important factor of understanding the HE phenomenon and predicting hydrogen-assisted failure is the descent knowledge about the hydrogen transport behaviour in the material. Neutron radiography is a proven method for tracking hydrogen diffusion and it was applied successfully in various research studies. In the presented study, we examined the hydrogen effusion behaviour in duplex stainless steel by means of neutron radiography and calculated the effective diffusion coefficient from the obtained transmission images. KW - Neutron radiography KW - Hydrogen diffusion KW - Duplex stainless steels KW - Hydrogen embrittlement PY - 2014 SN - 978-3-319-06144-3 SN - 978-3-319-06145-0 U6 - https://doi.org/10.1007/978-3-319-06145-0_9 SP - 155 EP - 163 PB - Springer AN - OPUS4-31357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengiesser, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. KW - Duplex stainless steels KW - In situ measurement KW - LIBS KW - GMAW PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597940 SN - 0584-8547 VL - 214 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -