TY - CONF A1 - Griesche, Axel A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Kardjilov, Nikolay T1 - The debye waller factor for temperature distribution determination in NBEI experiments: a case study for GTAW N2 - We could show in GTAW experiments with steel samples that the attenuation of neutron transmission underneath the welding torch due to the Debye-Waller-effect correlates well with sample temperatures obtained by FE numerical simulations. This would allow principally to determine sample temperatures by measuring the neutron beam attenuation. T2 - ITMNR-9 CY - Buenos Aires, Argentina DA - 17.10.2022 KW - Debye waller factor KW - GTAW KW - Temperature distribution determination PY - 2022 AN - OPUS4-56150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) JF - Forces in mechanics N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542026 DO - https://doi.org/10.1016/j.finmec.2021.100063 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Kannengießer, Thomas T1 - The influence of hydrogen on strain-induced martensite formation and cracking in SMSS investigated simultaneously by ED-XRD and by X-ray radiography N2 - Die Ergebnisse von in-situ Experimenten am Berliner Elektronenspeicherring (BESSY II) werden vorgestellt. Es wurden Zugversuche an wasserstoffbeladenen und wasserstofffreien supermartensitischen Proben durchgeführt und Diffraktionsspektren und radiographische Bilder aufgenommen. Die energiedispersive Röntgendiffraktion ermöglichte dabei in-situ die dehnungsinduzierte Phasenumwandlung von Restaustenit zu Martensit zu beobachten. Die Radiographiebilder der zerreisenden Probe gaben Einblicke in das Bruchverhalten in Abhängigkeit vom Wasserstoffgehalt. T2 - 4th in-situ Workshop 2021 @ 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - Wasserstoffdegradation KW - Snergiedispersive Röntgendiffraktion KW - Zugversuch KW - Röntgenradiographie KW - Supermatensitischer Stahl PY - 2021 AN - OPUS4-53697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW JF - Novel Approaches for Nondestructive Testing and Evaluation N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature M s since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Neutron radiography KW - Debye–Waller factor KW - Austenite-to-martensite transformation KW - Low transformation temperature (LTT) steel KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559077 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 PB - MDPI AN - OPUS4-55907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Kardjilov, N. T1 - The Debye-Waller Factor for Temperature Distribution Determination in NBEI Experiments: A Case Study for GTAW N2 - In Neutron-Bragg-Edge Imaging (NBEI) in situ experiments, we studied the phase transitions in martensitic steel sheets during butt-welding. Gas tungsten arc welding was used with a motorized torch allowing automated weldments. The austenitization in the heat affected zone underneath the welding head could be clearly visualized. Also, the retransformation into the martensitic phase upon cooling. However, we observed an unexpected additional change in transmission at λ = 0.44 nm that is at a wavelength larger than the wavelength of the Bragg edges of both the martensitic and austenitic phases. We attribute this change to the Deybe-Waller-Factor that describes the temperature dependence of coherent scattering at a crystal lattice. With help of temperature field simulations that were calibrated by the reading of anattached thermo couple during welding, we could show that the Debye-Waller factor can produce an additional image contrast. T2 - SNI 2022 CY - Berlin, Germany DA - 05.09.2022 KW - Welding KW - Debys-Waller-Factor KW - Neutron Imaging PY - 2022 AN - OPUS4-55630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) JF - IOP Conference Series: Materials Science and Engineering N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571308 DO - https://doi.org/10.1088/1757-899X/1274/1/012018 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Schulz, M. A1 - Kardjilov, N. ED - Duprez, Lode T1 - Hydrogen in steel visualized by neutron imaging T2 - Proceedings of the Third International Conference on Metals & Hydrogen N2 - Neutron cameras allow visualizing hydrogen distributions with radiographic or tomographic imaging methods in iron and steel. The necessary contrast between hydrogen and iron stems from the high difference in the total neutron cross section of both elements. This allows e.g. the in situ measurement of hydrogen mass flow inside cm thick steel samples with a temporal resolution of 20 s using neutron radiography as well as the quantitative measurement of hydrogen accumulations at the crack’s inner surfaces in hydrogen embrittled iron samples with neutron tomography. We could detect directly gaseous hydrogen in the crack cavities and we measured the gas pressure. This new quality of the information on a micrometer scale allows new insights for the analysis of hydrogen-induced damage mechanisms. Further, this method is non-destructive and provides local information in situ and in three dimensions with a spatial resolution of 20-30 µm. In this contribution, we show examples that demonstrate the spatial and temporal resolution of the neutron radiography and tomography methods in order to visualize and quantify hydrogen accumulations at cracks. The measurements were performed at the research reactor BER II of the HZB in Berlin and at the FRM II reactor of the neutron source Heinz Maier-Leibnitz in Garching. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Steel KW - Neutron imaging PY - 2018 SN - 978-9-08179-422-0 SP - J01 AN - OPUS4-45359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Schaupp, Thomas A1 - Pfretzschner, Beate A1 - Kardjilov, N. A1 - Schulz, M. T1 - Hydrogen in steel visualized by neutron imaging N2 - Neutron cameras allow visualizing hydrogen distributions with radiographic or tomographic imaging methods in iron and steel. The necessary contrast between hydrogen and iron stems from the high difference in the total neutron cross section of both elements. This allows e.g. the in situ measurement of hydrogen mass flow inside cm thick steel samples with a temporal resolution of 20 s using neutron radiography as well as the quantitative measurement of hydrogen accumulations at the crack’s inner surfaces in hydrogen embrittled iron samples with neutron tomography. We could detect directly gaseous hydrogen in the crack cavities and we measured the gas pressure. This new quality of the information on a micrometer scale allows new insights for the analysis of hydrogen-induced damage mechanisms. Further, this method is non-destructive and provides local information in situ and in three dimensions with a spatial resolution of 20-30 μm. In this contribution, we show examples that demonstrate the spatial and temporal resolution of the neutron radiography and tomography methods in order to visualize and quantify hydrogen accumulations at cracks. The measurements were performed at the research reactor BER II of the HZB in Berlin and at the FRM II reactor of the neutron source Heinz Maier-Leibnitz in Garching. T2 - 3rd international conference on metals & hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Neutron KW - Radiography KW - Tomography KW - Steel PY - 2018 AN - OPUS4-45074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy JF - IOP conference series: Materials science and engineering N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511595 DO - https://doi.org/10.1088/1757-899X/882/1/012023 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Kannengießer, Thomas T1 - Martensitumwandlung in situ analysiert mit Röntgenstrahlung N2 - Die dehnungsinduzierte Martensitbildung wurde mittels Röntgen-Diffraktion und -Radiographie mit dem EDDI-Instrument am BESSY II in supermartensitischem Stahl mit Anlassaustenit untersucht. Die Bildung wird durch Wasserstoff im Gefüge unterdrückt. Die Duktilität von wasserstofffreiem SMSS korreliert mit dem Anteil an dehnungs-induziertem Martensit T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Wasserstoff KW - Materialschädigung KW - Materialschaedigung KW - Synchrotron PY - 2020 AN - OPUS4-51190 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -