TY - JOUR A1 - Gollnow, C. A1 - Griesche, Axel A1 - Weidemann, Jens A1 - Kannengießer, Thomas T1 - Influence of external loads on a characteristic angle between grains and solidus line as an indicator for hot cracking susceptibility during GTA welding N2 - A long list of criteria determining the hot cracking susceptibility already exists. A main influence on solidification cracking can result from the design of the welded construction, i.e. from the influence of external loads. Using the Controlled Tensile Weldability (CTW) test, an external load hot cracking test, the influence of constant pre-load and different extension rates on the solidification cracking behavior of GTA (Gas Tungsten Arc) welds in an austenitic (AISI 309) and a ferritic (AISI 441) steel were investigated. Compared to specimens welded allowing free shrinkage and welded with an applied constant tensile pre-load, the specimens welded during the application of increasing tensile load show solidification cracks. In the weld seams, a characteristic angle α between the predominantly columnar grains and the fusion line can be observed. Specimens showing solidification cracks show a significantly larger angle α compared to the crack-free specimens. Based on these observations, the characteristic angle α is proposed as a new hot cracking criterion. KW - Hot cracking KW - External load test KW - Component design KW - Crack criterion KW - Grain growth PY - 2017 U6 - https://doi.org/10.1016/j.jmatprotec.2016.08.013 VL - 239 SP - 172 EP - 177 PB - Elsevier AN - OPUS4-37278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Kardjilov, N. ED - Somerday, B. P. ED - Sofronis, P. T1 - Measurement of hydrogen distributions in metals by neutron radiography and tomography N2 - Neutron imaging has become a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Hydrogen mass flow can be measured inside cm thick Steel samples with 10 s temporal resolution. Hydrogen accumulations around craclcs in embrittled iron samples can be visualized three-dimensionally. The gas pressure of hydrogen in crack cavities has been measured to be in the ränge of 5 MPa to 15 MPa. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g., of hydrogen blistering. Further, this method is nondestructive and provides local information in situ and in three dimensions with a spatial resolution of 20 µm - 30 µm. T2 - International Hydrogen Conference 2016 CY - Jackson Lake Lodge, Wyoming, USA DA - 11.09.2017 KW - Hydrogen KW - Neutron imaging KW - Neutron radiography KW - Neutron tomography PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch46 SP - 416 EP - 422 AN - OPUS4-42505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -