TY - CONF A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. A1 - Banhart, J. A1 - Griesche, Axel T1 - Imaging with Cold Neutrons at the CONRAD-2 Facility T2 - Physics Procedia N2 - CONRAD-2 is an imaging instrument using low-energy (cold) neutrons. The instrument is installed at the end of a curved neutron guide which avoids the direct line of sight towards the reactor core. This ensures a very low background of high-energy neutrons and. photons at the sample position. The cold neutron beam provides a wavelength range which is suitable for phase-and diffraction-contrast imaging such as grating interferometry and Bragg edge mapping. The instrument is well suited for high resolution imaging due to the high efficiency of the very thin scintillators that can be used for the detection of cold neutrons. An instrument upgrade was performed recently as a part of an upgrade program for the cold neutron instrumentation at HZB. The parameters of the instrument as well as some research highlights will be presented. T2 - 10th World Conference on Neutron Radiography (WCNR) CY - Grindelwald, SWITZERLAND DA - 05.10.2014 KW - iron embrittlement KW - neutron imaging KW - neutron instrumentation KW - cold neutrons PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-373239 DO - https://doi.org/10.1016/j.phpro.2015.07.008 SN - 1875-3892 VL - 69 SP - 60 EP - 66 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-37323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Schulz, M. A1 - Kardjilov, N. ED - Duprez, Lode T1 - Hydrogen in steel visualized by neutron imaging T2 - Proceedings of the Third International Conference on Metals & Hydrogen N2 - Neutron cameras allow visualizing hydrogen distributions with radiographic or tomographic imaging methods in iron and steel. The necessary contrast between hydrogen and iron stems from the high difference in the total neutron cross section of both elements. This allows e.g. the in situ measurement of hydrogen mass flow inside cm thick steel samples with a temporal resolution of 20 s using neutron radiography as well as the quantitative measurement of hydrogen accumulations at the crack’s inner surfaces in hydrogen embrittled iron samples with neutron tomography. We could detect directly gaseous hydrogen in the crack cavities and we measured the gas pressure. This new quality of the information on a micrometer scale allows new insights for the analysis of hydrogen-induced damage mechanisms. Further, this method is non-destructive and provides local information in situ and in three dimensions with a spatial resolution of 20-30 µm. In this contribution, we show examples that demonstrate the spatial and temporal resolution of the neutron radiography and tomography methods in order to visualize and quantify hydrogen accumulations at cracks. The measurements were performed at the research reactor BER II of the HZB in Berlin and at the FRM II reactor of the neutron source Heinz Maier-Leibnitz in Garching. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Steel KW - Neutron imaging PY - 2018 SN - 978-9-08179-422-0 SP - J01 AN - OPUS4-45359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Kardjilov, N. ED - Somerday, B. P. ED - Sofronis, P. T1 - Measurement of hydrogen distributions in metals by neutron radiography and tomography T2 - Material Perfomance in Hydrogen Environments - Proceedings of the 2016 International Hydrogen Conference N2 - Neutron imaging has become a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Hydrogen mass flow can be measured inside cm thick Steel samples with 10 s temporal resolution. Hydrogen accumulations around craclcs in embrittled iron samples can be visualized three-dimensionally. The gas pressure of hydrogen in crack cavities has been measured to be in the ränge of 5 MPa to 15 MPa. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g., of hydrogen blistering. Further, this method is nondestructive and provides local information in situ and in three dimensions with a spatial resolution of 20 µm - 30 µm. T2 - International Hydrogen Conference 2016 CY - Jackson Lake Lodge, Wyoming, USA DA - 11.09.2017 KW - Hydrogen KW - Neutron imaging KW - Neutron radiography KW - Neutron tomography PY - 2017 SN - 978-0-7918-6138-7 DO - https://doi.org/10.1115/1.861387_ch46 SP - 416 EP - 422 AN - OPUS4-42505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Kannengießer, Thomas T1 - Neutron imaging of hydrogen in steels T2 - Materials Science & Technology (MS&T) 2013 (Proceedings) T2 - Materials Science & Technology (MS&T) 2013 CY - Montreal, Quebec, Canada DA - 2013-10-27 KW - Neutron radiography KW - Hydrogen KW - Diffusion KW - Steel PY - 2013 SP - 945 EP - 950 PB - Curran CY - Red Hook, NY AN - OPUS4-29506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -