TY - CONF A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. A1 - Banhart, J. A1 - Griesche, Axel T1 - Imaging with Cold Neutrons at the CONRAD-2 Facility N2 - CONRAD-2 is an imaging instrument using low-energy (cold) neutrons. The instrument is installed at the end of a curved neutron guide which avoids the direct line of sight towards the reactor core. This ensures a very low background of high-energy neutrons and. photons at the sample position. The cold neutron beam provides a wavelength range which is suitable for phase-and diffraction-contrast imaging such as grating interferometry and Bragg edge mapping. The instrument is well suited for high resolution imaging due to the high efficiency of the very thin scintillators that can be used for the detection of cold neutrons. An instrument upgrade was performed recently as a part of an upgrade program for the cold neutron instrumentation at HZB. The parameters of the instrument as well as some research highlights will be presented. T2 - 10th World Conference on Neutron Radiography (WCNR) CY - Grindelwald, SWITZERLAND DA - 05.10.2014 KW - iron embrittlement KW - neutron imaging KW - neutron instrumentation KW - cold neutrons PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-373239 SN - 1875-3892 VL - 69 SP - 60 EP - 66 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-37323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking in metals using refraction enhanced synchrotron CT N2 - Hydrogen in metals can cause a degradation of the mechanical properties with possible subsequent hydrogen assisted cracking (HAC). Though, the mechanism of HAC is not completely understood yet and thus suitable methods for in situ investigations to characterise the crack formation are needed. X-ray computed tomography (CT) is a well-known tool for analysing these properties. However, the effective resolution of the detector system limits the detection of small defects by CT. Analyser based imaging (ABI) takes advantage of x-ray refraction at interfaces between volumes of different density, i.e. of cracks, pores, inclusions, etc., within the sample to detect defects smaller than the resolution of the detector system. In this study, measurements on an aluminium alloy weld showed that ABI allows us to resolve the 3D structure of cracks undetected by absorption based CT. Prospective investigations will analyse HAC in steels. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 2015-09-15 KW - Wasserstoffversprödung KW - Wasserstoffunterstützte Rissbildung KW - Röntgenrefraktion KW - CT KW - Hydrogen embrittlement (HE) KW - Hydrogen assisted cracking (HAC) KW - Aluminium alloy KW - X-ray refraction KW - Analyser based imaging KW - Computed tomography (CT) KW - Synchrotron radiation PY - 2015 SN - 1435-4934 SP - 1217 EP - 1224 AN - OPUS4-34287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -