TY - JOUR A1 - Schumacher, David A1 - Sharma, R. A1 - Grager, J.-C. A1 - Schrapp, M. T1 - Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors N2 - Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction. KW - X-ray computed tomography KW - Photon counting detector KW - CdTe sensor KW - Non-destructive testing KW - Beam hardening KW - Scattered radiation PY - 2018 UR - http://iopscience.iop.org/article/10.1088/1361-6501/aabef7/meta U6 - https://doi.org/10.1088/1361-6501/aabef7 SN - 1361-6501 VL - 29 IS - 7 SP - 075101, 1 EP - 12 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-44959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -