TY - JOUR A1 - Manke, I. A1 - Kardjilov, N. A1 - Schäfer, R. A1 - Hilger, A. A1 - Strobl, M. A1 - Dawson, M. A1 - Grünzweig, C. A1 - Behr, G. A1 - Hentschel, Manfred P. A1 - David, C. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Banhart, J. T1 - Three-dimensional imaging of magnetic domains N2 - Magnetic domains have been the subject of much scientific investigation since their theoretical existence was first postulated by P.-E. Weiss over a century ago. Up to now, the three-dimensional (3D) domain structure of bulk magnets has never been observed owing to the lack of appropriate experimental methods. Domain analysis in bulk matter thus remains one of the most challenging tasks in research on magnetic materials. All current domain observation methods are limited to studying surface domains or thin magnetic films. As the properties of magnetic materials are strongly affected by their domain structure, the development of a technique capable of investigating the shape, size and distribution of individual domains in three dimensions is of great importance. Here, we show that the novel technique of Talbot-Lau neutron tomography with inverted geometry enables direct imaging of the 3D network of magnetic domains within the bulk of FeSi crystals. KW - Computed tomography KW - Reconstruction algorithm KW - Talbot-Lau neutron tomography KW - Magnetic domains PY - 2010 U6 - https://doi.org/10.1038/ncomms1125 SN - 2041-1723 SP - 1 EP - 6 PB - Nature Publishing Group CY - London, UK AN - OPUS4-22609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manke, I. A1 - Kardjilov, N. A1 - Schäfer, R. A1 - Hilger, A. A1 - Grothausmann, R. A1 - Strobl, M. A1 - Dawson, M. A1 - Grünzweig, C. A1 - Tötzke, C. A1 - David, C. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Banhart, J. T1 - Three-dimensional imaging of magnetic domains with neutron grating interferometry N2 - This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique. KW - Neutron imaging KW - Tomography KW - Magnetic domains KW - Grating interferometry KW - Darkfield imaging KW - Shearing gratings KW - Talbot-Lau KW - Three-dimensional data quantification KW - Tomographic reconstruction PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-341919 SN - 1875-3892 VL - 69 SP - 404 EP - 412 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -