TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks: in nature and in the lab T2 - Bio-Geo-Kolloquium CY - Jena, Germany DA - 2009-06-09 PY - 2009 AN - OPUS4-19979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks: in nature and in the lab T2 - BioClub der Freien Universität Berlin CY - Berlin, Germany DA - 2009-07-14 PY - 2009 AN - OPUS4-19980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - How biological interactions and physical stresses influence fungal; biogeochemical impact T2 - Goldschmidt-Tagung 2009 CY - Davos, Switzerland DA - 2009-06-23 PY - 2009 AN - OPUS4-19981 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gorbushina, Anna A1 - Broughton, W.J. T1 - Microbiology of the atmosphere-rock interface: How biological interactions and physical stresses modulate a sophisticated microbial ecosystem N2 - Life at the atmosphere-lithosphere boundary is an ancient terrestrial niche that is sparsely covered by thin subaerial biofilms. The microbial inhabitants of these biofilms (a) have adapted to all types of terrestrial/subaerial stresses (e.g., desiccation, extreme temperatures, low nutrient availability, intense solar radiation), (b) interact with minerals that serve as both a dwelling and a source of mineral nutrients, and (c) provoke weathering of rocks and soil formation. Subaerial communities comprise heterotrophic and phototrophic microorganisms that support each other's lifestyle. Major lineages of eubacteria associated with the early colonization of land (e.g., Actinobacteria, Cyanobacteria) are present in these habitats along with eukaryotes such as microscopic green algae and ascomycetous fungi. The subaerial biofilm inhabitants have adapted to desiccation, solar radiation, and other environmental challenges by developing protective, melanized cell walls, assuming microcolonial architectures and symbiotic lifestyles. How these changes occurred, their significance in soil formation, and their potential as markers of climate change are discussed below. KW - Cyanobacteria KW - Geobiology KW - Microcolonial fungi KW - Rock inhabiting KW - Fungi-phototroph symbioses KW - Soil formation KW - Subaerial biofilms KW - Weathering PY - 2009 DO - https://doi.org/10.1146/annurev.micro.091208.073349 SN - 0066-4227 VL - 63 SP - 431 EP - 450 PB - Annual Reviews Inc. CY - Palo Alto, CA, USA AN - OPUS4-20243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Krumbein, W. A1 - Gorbushina, Anna ED - Watt, J. ED - Tidblad, J. ED - Kucera, V. ED - Hamilton, R. T1 - Some aspects of biological weathering and air pollution KW - Cyanobacteria KW - Geobiology KW - Microcolonial fungi KW - Rock inhabiting fungi-phototroph symbioses KW - Soil formation KW - Subaerial biofilms KW - Weathering PY - 2009 SN - 978-0-387-84892-1 DO - https://doi.org/10.1007/978-0-387-84893-8_5 IS - Chapter 5 SP - 127 EP - 145 PB - Springer Science + Business Media AN - OPUS4-20886 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the Rocks or Subaerial Biofilms T2 - Mikrobiologisches Kolloquium, Institut für Biologie an der Freien Universität, Fachbereich Biologie, Chemie, Pharamzie CY - Berlin, Germany DA - 2010-01-29 PY - 2010 AN - OPUS4-20864 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Idealbiofilm als neues Testsystem: Laborsimulation von Umwelteinflüssen und biologischer Einwirkung auf Materialien T2 - 39. Jahrestagung der GUS Gesellschaft für Umweltsimulation e. V. CY - Stutensee, Germany DA - 2010-03-19 PY - 2010 AN - OPUS4-21103 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks: microscopic landscapes under the influence of microbes and atmosphere T2 - Vortrag CY - Potsdam, Germany DA - 2010-03-10 PY - 2010 AN - OPUS4-21104 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gorbushina, Anna ED - Ziegahn, K.-F. T1 - Idealbiofilm als neues Testsystem: Laborsimulation von Umwelteinflüssen und biologischer Einwirkung auf Materialien T2 - 39. Jahrestagung der GUS 2010 - Umweltflüsse erfassen, simulieren, bewerten CY - Stutensee, Deutschland DA - 2010-03-17 KW - Materialschäden KW - Mikrobielle Vergesellschaftungen KW - Pilze KW - Cyanobakterien PY - 2010 SN - 978-3-9813136-0-4 SP - 197 EP - 207 PB - DWS Werbeagentur und Verlag GmbH CY - Pfinztal AN - OPUS4-21109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruibal, C. A1 - Gueidan, C. A1 - Selbmann, L. A1 - Gorbushina, Anna A1 - Crous, P.W. A1 - Groenewald, J.Z. A1 - Muggia, L. A1 - Grube, M. A1 - Isola, D. A1 - Schoch, C.L. A1 - Staley, J.T. A1 - Lutzoni, F. A1 - De Hoog, G.S. T1 - Phylogeny of rock-inhabiting fungi related to Dothideomycetes N2 - The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Myriangiales, as well as some uncharacterised groups with affinities to Dothideomycetes. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation. KW - Arthoniomycetes KW - Capnodiales KW - Dothideomycetes KW - Evolution KW - Extremotolerance KW - Multigene phylogeny KW - Rock-inhabiting fungi PY - 2009 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-219821 DO - https://doi.org/10.3114/sim.2009.64.06 SN - 0166-0616 VL - 64 IS - 1 SP - 123 EP - 133 PB - Centraalbureau voor Schimmelcultures CY - Utrecht, The Netherlands AN - OPUS4-21982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Krumbein, W.E. A1 - Gorbushina, Anna ED - Timmis, K.N. T1 - Global relations between the Redox cycles of carbon, iron, and sulfur N2 - Solar energy has been transformed into useful redox differences or disequilibria within the Earth´s crust since the onset of anoxygenic and oxygenic photosynthesis in the Precambrian. Inorganic oxidized carbon is transformed into reduced carbon compounds by capturing and storing solar energy. During this process, many different organic compounds are formed including carbohydrates, proteins, hydrocarbons, and various other complex organic metabolic products and their diagenetic polymerization products (melanin, humic substances, petroleum, coal, and kerogen). Many of these solar energy-enriched compounds, however, are oxidized immediately or during the diagenetic transformation of sediments. The oxidation agents are oxygen, sulfate, iron, and other oxidized compounds, which in turn are partly enriched with the original solar energy. On a global biogeochemical scale, however, sulfur and iron are the most important elements. Geological evidence shows that biogeochemical cycles tend to yield stable ratios between the most oxidized forms of carbon (carbon dioxide and calcium/magnesium carbonate) and the most reduced forms (diamond, coal, methane, and hydrocarbons). Throughout the Earth’s history and evolution, this equilibrium ratio is around 1:4, maximally 1:5. When too much carbon is stored in the crust in the form of reduced compounds or vice versa, climatic and biogeomorphogenetic consequences upset the equilibrium. The biosphere reacts in a way to return to the optimal ratio. Excellent examples for this fluctuating equilibrium are the Carboniferous (too much organic carbon stored), the Permian (too little organic carbon stored), and the Tertiary with a generally equivalent production of hydrocarbons and carbonates. At present, we are in a period in which there is a global biogeochemical need to oxidize reduced carbon compounds as fast as possible in order to avoid even more dramatic global climate shifts. The highly evolved human genome seems to be the tool for this shift. Enormous amounts of reduced carbon are turned into the oxidized form as carbon dioxide, which by various biogeochemical pathways is quickly transformed into carbonate, another oxidized form of carbon that can be stabilized and stored in the sedimentary record. Fast recycling of excessively stored solar energy may enable the survival of a global biosphere under highly stressed conditions. KW - Geochemistry KW - Biologically influenced mineral fluxes PY - 2010 SN - 978-3-540-77584-3 SN - 978-3-540-77587-4 DO - https://doi.org/10.1007/978-3-540-77587-4_10 IS - Chapter 10 SP - 157 EP - 169 PB - Springer CY - Berlin Heidelberg AN - OPUS4-21983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Mikrobiologische Perspektiven der Materialkunde T2 - 12. Mitgliedstreffen des Berliner Kreises der GUS Gesellschaft für Umweltsimulation e. V. CY - Berlin, Germany DA - 2010-10-19 PY - 2010 AN - OPUS4-22159 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Mikrobiologische Perspektiven der Materialkunde T2 - Kolloquium der AG Photobiophysik am Institut für Physik an der Humboldt-Universität zu Berlin CY - Berlin, Germany DA - 2010-11-08 PY - 2010 AN - OPUS4-22353 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beckmann, S. A1 - Krüger, M. A1 - Engelen, B. A1 - Gorbushina, Anna A1 - Cypionka, H. T1 - Role of bacteria, archaea and fungi involved in methane realease in abandoned coal mines N2 - Worldwide, abandoned coal mines release substantial amounts of methane, which is largely of biogenic origin. The aim of this study was to understand the microbial processes involved in mine-gas formation. Therefore, coal and timber samples and anaerobic enrichments from two abandoned coal mines in Germany were subjected to DGGE analyses and quantitative PCR. The primers used were specific for Bacteria, Archaea, Fungi, and the key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). A broad spectrum of facultative anaerobic bacteria and acetogens belonging to all five groups (α-ε) of the Proteobacteria, as well as the Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi were detected. Archaea were represented by acetoclastic Methanosarcinales and Crenarchaeota with an unknown metabolism. Fungi formed thick biofilms particularly on timber, and were identified as typical wood degraders belonging to the Ascomycetes and Basidiomycetes. The community analysis as well as the environmental conditions and the metabolites detected in a previous study are consistent with the following scenario of methane release: Weathering of coal and timber is initiated by wood-degrading Fungi and Bacteria under a suboxic atmosphere. In the lower, oxygen-depleted layers Fungi and Bacteria perform incomplete oxidation and release reduced substrates which can be channeled into methanogenesis. Acetate appeared to be the main precursor of the biogenic methane in the investigated coal mines. KW - Mine gas KW - Community analysis or microbial diversity KW - Quantitative PCR KW - DGGE KW - Acetoclastic methanogenesis KW - Fermentative bacteria KW - Methanosarcinales PY - 2011 DO - https://doi.org/10.1080/01490451.2010.503258 SN - 0149-0451 VL - 28 IS - 4 SP - 347 EP - 358 PB - Crane, Russak & Co. CY - New York, NY, USA AN - OPUS4-23841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - A simple genetically tractable model system to study fungus-material interactions T2 - Kolloqium Fachbereich Geochemie CY - Philipps-Universität Marburg; Germany DA - 2015-07-01 PY - 2015 AN - OPUS4-33751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Wachsender Faktor der Energiewende: Biofilme auf Photovoltaikanlagen T2 - Vortrag bei der Universität Oldenburg CY - Oldenburg, Germany DA - 2014-04-29 PY - 2014 AN - OPUS4-31302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Leben auf Materialien: von Grundlagen der Biofilmbildung zu angewandter Forschung und neuen Werkstofftests T2 - DECHEMA Frühjahrstagung der Biotechnologen 2014 CY - Frankfurt am Main, Deutschland DA - 2014-03-11 PY - 2014 AN - OPUS4-32262 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stephan, Ina A1 - Askew, P. A1 - Gorbushina, Anna A1 - Grinda, Manfred A1 - Hertel, Horst A1 - Krumbein, W.E. A1 - Müller, R.-J. A1 - Pantke, Michael A1 - Plarre, Rüdiger A1 - Schmitt, G. A1 - Schwibbert, Karin ED - Czichos, Horst ED - Saito, T. ED - Smith, L. T1 - Biogenic impact on materials N2 - Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made. KW - Materialschutz KW - Biologie KW - Organismus KW - Standard KW - Prüfung PY - 2011 SN - 978-3-642-16640-2 SP - 769 EP - 844 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-24210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seiffert, Franz A1 - Bandow, Nicole A1 - Bouchez, J. A1 - Von Blanckenburg, F. A1 - Gorbushina, Anna T1 - Microbial colonization of bare rocks: laboratory biofilm enhances mineral weathering N2 - A laboratory biofilm consisting of the phototrophic cyanobacterium Nostoc punctiforme ATCC 29133 and the rock-inhabiting ascomycete Knufia petricola CBS 726.95 was tested for its mineral weathering potential. Minerals with different grain sizes and mineralogy were incubated with and without biofilm in batch and in flow-through column experiments. After incubation, the mineral dissolution was quantified analysing (i) leachate chemistry via ICP-OES/MS (inductively coupled plasma optical emission spectrometry/mass spectrometry) and (ii) the residual grains as thin polished sections via SEM/TEM-EDX (scanning electron microscopy/transmission electron microscopy-energy dispersive X-ray spectrometry). Mineral dissolution was enhanced in biotic experiments as compared to abiotic ones, for both batch culture and flow-through approaches. Analyses of thin polished sections confirmed the leaching of these elements near the surface of the mineral grains. These results clearly indicate a biotic effect on the weathering of minerals produced by the laboratory biofilm. KW - Biotic weathering KW - Flow-through cell KW - Albite KW - Forsterite KW - Olivine PY - 2014 DO - https://doi.org/10.1016/j.proeps.2014.08.042 SN - 1878-5220 VL - 10 SP - 123 EP - 129 PB - Curran CY - Red Hook, NY, USA AN - OPUS4-32739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - "... a forted residence 'gainst the tooth of time..." T2 - Centre for the Study of Manuscript Cultures (CSMC) CY - Universität Hamburg DA - 2015-06-11 PY - 2015 AN - OPUS4-33518 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbial colonisation of bare rocks: a balance between understanding fungal genetics and weathering processes T2 - Geomicrobiological and Geochemical Colloquium CY - Deutsches GeoForschungsZentrum, Potsdam DA - 2015-06-19 PY - 2015 AN - OPUS4-33519 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lukowiak, M.C. A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula A1 - Landsberger, Petra A1 - Boenke, Viola A1 - Rodenacker, K. A1 - Braun, Ulrike A1 - Friedrich, Jörg Florian A1 - Gorbushina, Anna A1 - Haag, R. T1 - Polyglycerol coated polypropylene surfaces for protein and bacteria resistance N2 - Polyglycerol (PG) coated polypropylene (PP) films were synthesized in a two-step approach that involved plasma bromination and subsequently grafting hyperbranched polyglycerols with very few amino functionalities. The influence of different molecular weights and density of reactive linkers were investigated for the grafted PGs. Longer bromination times and higher amounts of linkers on the surface afforded long-term stability. The protein adsorption and bacteria attachment of the PP-PG films were studied. Their extremely low amine content proved to be beneficial for preventing bacteria attachment. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325406 DO - https://doi.org/10.1039/c4py01375a SN - 1759-9954 SN - 1759-9962 VL - 6 IS - 8 SP - 1350 EP - 1359 AN - OPUS4-32540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbial colonisation of bare rocks: a laboratory model to study initial and microscopic weathering processes T2 - Steepest Decent 2015 CY - Vienna, Austria DA - 2015-04-18 PY - 2015 AN - OPUS4-33234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Montero-Calasanz, M.C. A1 - Göker, M. A1 - Pötter, G. A1 - Rohde, M. A1 - Spröer, C. A1 - Schumann, P. A1 - Gorbushina, Anna A1 - Klenk, H.P. T1 - Geodermatophilus saharensis sp. nov., isolated from sand of the Saharan desert in Chad N2 - A novel Gram-positive, aerobic, actinobacterial strain, CF5/5, was isolated from soil in the Sahara desert, Chad. It grew best at 20–35 °C and at pH 6.0–8.0 and with 0–4 % (w/v) NaCl, forming black-colored colonies. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content was 75.9 mol%. The peptidoglycan contained meso-diaminopimelic acid; galactose and xylose were detected as diagnostic sugars. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, and phosphatidylinositol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were: iso-C16:0 and iso-C15:0. The 16S rRNA gene showed 95.6–98.3 % sequence similarity with the other named members of the genus Geodermatophilus. Based on the polyphasic taxonomy data, the isolate is proposed to represent a novel species, Geodermatophilus saharensis with the type strain CF5/5T = DSM 45423 = CCUG 62813 = MTCC 11416. KW - Actinomycetes KW - Geodermatophilaceae KW - Taxonomy KW - Sahara desert KW - Phenotype microarray PY - 2012 DO - https://doi.org/10.1007/s00203-012-0860-8 SN - 0302-8933 SN - 1432-072X IS - Dezember SP - 1 EP - 7(?) PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-27630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knabe, Nicole A1 - Gorbushina, Anna T1 - Life on the rocks or deserts at your doorstep T2 - Seminar Berlin Center for Genomics in Biodiversity Research CY - Berlin, Germany DA - 2015-04-15 PY - 2015 AN - OPUS4-33101 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shirakawa, M.A. A1 - Zilles, R. A1 - Mocelin, A. A1 - Gaylarde, C.C. A1 - Gorbushina, Anna A1 - Heidrich, Gabriele A1 - Giudice, M.C. A1 - Del Negro, G.M.B. A1 - John, V.M. T1 - Microbial colonization affects the efficiency of photovoltaic panels in a tropical environment N2 - Sub-aerial biofilm (SAB) development on solar panels was studied in São Paulo. After 6, 12 and 18 months' exposure, photovoltaic panels were covered by increasing proportions of organic matter (42%, 53% and 58%, respectively). Fungi were an important component of these biofilms; very few phototrophs were found. Major microorganisms detected were melanised meristematic ascomycetes and pigmented bacterial genera Arthrobacter and Tetracoccus. While diverse algae, cyanobacteria and bacteria were identified in biofilms at 6 and 12 months, diversity at a later stage was reduced to that typical for SAB: the only fungal group detected in 18 month biofilm was the meristematic Dothideomycetes and the only phototrophs Ulothrix and Chlorella. Photovoltaic modules showed significant power reductions after 6, 12 (both 7%) and 18 (11%) months. The lack of difference in power reduction between 6 and 12 months reflects the dual nature of soiling, which can result from the deposition of particulates as well as from SAB fouling. Although 12-month old SAB demonstrated an almost 10-fold increase in fungal colonization and a higher organic content, the larger non-microbial particles (above 10 µm), which were important for efficiency reduction of lightly-biofilmed panels, were removed by high rainfall just before the 12-month sampling. KW - Sub-aerial biofilms KW - Energy production KW - Phototrophs KW - Fungi KW - Solar panels KW - Fouling KW - Biofilms KW - Photovoltaic module PY - 2015 DO - https://doi.org/10.1016/j.jenvman.2015.03.050 SN - 0301-4797 SN - 1095-8630 VL - 157 SP - 160 EP - 167 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-33107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Rock-weathering fungi: a simple genetically tractable model system to study organism-material interactions T2 - 28th Fungal Genetics Conference CY - Pacific Grove, California, USA DA - 2015-03-17 PY - 2015 AN - OPUS4-33056 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Bare rock biofilms - Model systems in biodeterioration sciences N2 - Essential processes in the establishment and maintenance of rock biofilms include photosynthesis, production of extracellular polymeric substances, substrate penetration and atmospheric nutrient enrichment. Functional diversity is supported by a complex subaerial biofilm (SAB) community of heterotrophic and phototrophic microorganisms. Stress tolerant and melanised Ascomycetes dominate heterotrophic SABs while diverse algae and cyanobacteria comprise the phototrophic consortia. Laboratory simulation of SABs permits use of molecular-genetic methods coupled with geochemical and microscopic analyses to study weathering. Our in vitro model includes two free-living and symbiosis-competent, genetically tractable microorganisms: the cyanobacterium Nostoc punctiforme and the microcolonial rock-inhabiting fungus Knufia petricola. This genetically amenable cyanobacterium/fungus model biofilm allows development of quantitative methods tailored to the natural diversity of SABs. Precise, reproducible studies using this model biofilm have shown that both the melanised fungus, as well as the combined bacterial/fungal system, enhances the weathering of minerals. Geochemical signatures of these in vitro rock biofilms can now be obtained and compared with bacterial/fungal mutants of varied EPS composition and substrate penetration patterns. And finally, precise study of the model cyanobacterium/fungus biofilm will Permit prediction of the effects of conservational treatments. T2 - 2. European conference on Biodeterioration of stone monuments CY - Cergy-Pontoise, France DA - 17.11.2016 KW - Model rock biofilm KW - Extracellular polymeric substances (EPS) PY - 2016 AN - OPUS4-38680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - A new tool in material science - Targeted disruption of melanin synthesis in rock-inhabiting fungi N2 - The ability to survive almost absolute dehydration through air-drying is a remarkable feature of rock-inhabiting microcolonial fungi (MCF), which colonise rock surfaces in hot and cold deserts. Understanding of the underlying mechanisms which allow this group of fungi to conquer natural and man-made environments requires a set of modern biological techniques and approaches that are under development in our laboratory. We will present an overview of the targeted disruption of melanin biosynthesis genes in the rock-inhabiting Knufia petricola and give inside into the lines of research and the network of supporting laboratories that made this progress possible. T2 - 6. Meeting of the ISHAM Working Group "Black Yeasts and Relatives" CY - Viterbo, Italy DA - 15.09.2016 KW - Black fungi KW - SAB KW - Biofilm PY - 2016 AN - OPUS4-37693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Genetic manipulation of protective pigments in a rock-inhabiting model fungus Knufia petricola A95 N2 - Sub-aerial biofilms typically form on bare rock. They consist of 99% cell material and extracellular polymeric substances (EPS) metabolising at low water availability. Rock-inhabiting melanised fungi represent an important part of the microbial community in these environments, playing important roles in the colonisation of mineral surfaces, rock weathering and soil formation in the ecological/geochemical context. Different cellular stress responses make rock-inhabiting ascomycetes fit for survival under extremely changing irradiation, as well as water, energy sources and nutrient availability. Melanised, rock-inhabiting fungi possess multiple protective pigments, form facultative symbiotic associations with photobionts and weather minerals. Melanised fungi build a protective layer around the cell that is critical in adhesion to other living partners, for the colonisation of the substrate and in the subsequent damage of the colonised surface. We chose Knufia petricola (Chaetothyriales) as a model species to analyse colonisation of surfaces. The basic physiology of K. petricola strain A95 is studied, its full genome sequence has been prepared for annotation and methods for deleting specific genes have been established. Unique features of K. petricola including the protective pigments (melanin and carotenoids) and EPS/cell wall properties are now being dissected genetically. As K. petricola strain A95 is in the basic clade of Chaetothyriales, it is an ancestor of both important human pathogens including Exophiala and lichens from the Verrucariaceae family. For this reason studies with A95 can help clarify the basis of fungal pathogenicity – as well as explain interactions with microscopic phototrophic partners like unicellular green algae and cyanobacteria. With Knufia petricola we will establish a canon of experimental approaches to characterise and quantify fungi that actively contact inanimate solid materials. The set of methods developed for Knufia will be adapted to heavily melanised and EPS-producing ascomycetes and can be broadly applied to medically important as well as material-colonising fungi. T2 - Gordon Research Conference (Cellular & Molecular Fungal Biology) CY - Holderness, NH, USA DA - 19.06.2016 KW - Model fungus KW - Knufia petricola A95 KW - Biofilm PY - 2016 AN - OPUS4-37812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menzel, Friederike A1 - Conradi, Bianca A1 - Rodenacker, K. A1 - Gorbushina, Anna A1 - Schwibbert, Karin ED - Menzel, Friederike T1 - Flow chamber system for the statistical evaluation of bacterial colonization on materials N2 - Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4‘,6-diamidino-2-phenylindole)-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel). With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial) applications. KW - Subaerial and subaquatic biofilm KW - Escherichia coli KW - Image analysis KW - Microscopy KW - Biofilm KW - Biofouling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377040 DO - https://doi.org/10.3390/ma9090770 SN - 1996-1944 VL - 9 IS - 9 SP - 770 AN - OPUS4-37704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Breitenbach, Romy A1 - Toepel, Jörg A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Gorbushina, Anna ED - Flemming, H.-C. ED - Neu, T. R. ED - Wingener, J. T1 - Snapshots of fungal extracellular matrices N2 - Fungal extracellular materials reinforce a constant interaction between their cell wall and the environment. A dynamic mixture of chitin, glucans, mannans, glycoproteins, glycolipids and pigments supports the success of all fungal life styles – from symbiotic to the free-living and pathogenic. Fungi are perfectly adapted to grow on surfaces and in porous environments, where they form medically and geochemically relevant biofilms. Fungal EPS are critical in adhesion to other fungi, other cells or substratum as well as in the following interaction with the host immune system or material they attack, degrade and deteriorate respectively. Characterisation of extracellular compounds and understanding of its function is necessary to limit damage caused by fungal activity. All necessary methodology from chemical characterization to complete genetic analyses has been developed for medically important fungi. Now it is time to apply this knowledge to the numerous, largely aerobic and very active organisms that occupy a wide range of atmosphere-exposed habitats in the upper lithosphere. One can expect that analogies between medically- and environmentally-relevant model fungal species will help us to address the dynamics of the fungal cell EPS matrix in much more efficient and widely applicable ways. KW - Fungal cell wall KW - Melanin KW - Fungal life styles KW - Environmental and pathogenic fungi KW - Model fungal biofilms KW - Biogenic weathering PY - 2016 SN - 9781780407418 SN - 9781780407425 DO - https://doi.org/10.2166/9781780407418 SP - Chapter 14, 269 EP - 299 PB - IWA Publishing CY - London, UK AN - OPUS4-38094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rasesh, Pokharel A1 - Gerrits, Ruben A1 - Schuessler, Jan A. A1 - Floor, Geerke H. A1 - Gorbushina, Anna A1 - von Blanckenburg, Friedhelm T1 - Mg isotope fractionation during uptake by a rock-inhabiting, model microcolonial fungus Knufia petricola at acidic and neutral pH N2 - The model rock-inhabiting microcolonial fungus Knufia petricola fractionates stable Mg isotopes in a time and pH-dependent manner. During growth, the increase of 26Mg/24Mg in the fungal cells relative to the growth media amounted to 0.65 ± 0.14‰at pH 6 and 1.11 ± 0.35‰at pH 3. We suggest a constant equilibrium fractionation factor during incorporation of Mg into ribosomes and ATP as a cause of enrichment of 26Mg in the cells. We suggest too that the proton gradient across the cell wall and cytoplasmic Membrane controls Mg2+ transport into the fungal cell. As the strength of this gradient is a function of extracellular solution pH, the pHdependence on Mg isotope fractionation is thus due to differences in fungal cell mass fluxes. Through a mass balance model we show that Mg uptake into the fungal cell is not associated with a unique Mg isotope fractionation factor. This Mg isotope fractionation dependence on pH might also be observed in any organism with cells that follow similar Mg uptake and metabolic pathways and serves to reveal Mg cycling in ecosystems. KW - Isotope fractionation KW - Fungus KW - Magnesium PY - 2017 DO - https://doi.org/10.1021/acs.est.7b01798 SN - 0013-936X SN - 1520-5851 VL - 51 IS - 17 SP - 9691 EP - 9699 PB - ACS Publications CY - USA AN - OPUS4-43018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Some like it on the rocks: The microcolonial fungus Knufia petricola A95 N2 - Black ascomycetous microcolonial fungi (MCF) are persistent inhabitants of rock surfaces in deserts as well as ubiquitous in other wide-spread terrestrial ecosystems including man-made materials such as solar panels. Applied research is necessary to find ways of preventing MCF from colonising and degrading solar panels and historic monuments. T2 - Mycological Seminar BAM / RKI CY - Berlin, Germany DA - 20.07.2017 KW - MCF KW - Black yeast PY - 2017 AN - OPUS4-41855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Rock biofilms in nature and in the lab N2 - Essential processes necessary for the establishment and maintenance of rock biofilms include photosynthesis, production of extracellular polymeric substances, substrate penetration and nutrient enrichment from the atmosphere. This natural functional diversity is supported by a complex biofilm community consisting of heterotrophic and phototrophic microorganisms. While heterotrophic rock biofilm-formers are dominated by stress-tolerant microcolonial ascomycetes, phototrophs might be represented by diverse algae and cyanobacteria. Reduction of model systems to the genetically tractable minimum, a proven successful experimental strategy in different symbiotic systems, is now applied to rock biofilms. These complex and important natural systems are simulated in the lab using genetic methods coupled with continuous microscopic and analytical (microscopic as well as geochemical and biochemical) observations. Our in vitro bipartite model includes free-living and symbiosis-competent, genetically tractable microorganisms – a rock-inhabiting fungus Knufia petricola A95 and a cyanobacterium Nostoc punctiforme strain ATCC 29133. To accurately reflect the development of a rock biofilm, contacts of these two genetically tractable partners are studied under well-controlled laboratory conditions. This experimental strategy is strongly supported by the knockout mutants of Knufia petricola which have been recently created and will be compared in their action on mineral surfaces. An impact of Knufia petricola strain A95 with or without protective pigments on mineral adhesion and alteration will be presented. T2 - XXX Congress of the Italian Lichen Society CY - Turin, Italy DA - 13.09.2017 KW - Knufia petricola KW - Biofilm KW - Rock-inhabiting fungus PY - 2017 AN - OPUS4-43136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Martin, Pedro A1 - Becker, Roland A1 - Toepel, J. A1 - Gorbushina, Anna T1 - An improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms N2 - The development of a test to evaluate the degradation of semi-volatile fuels as diesel by microorganisms is presented. This method is based on the principles described in the CEC-L-103 Standard procedure that is exclusively meant for testing the biodegradability of non-volatile lubricants. Therefore, significant modifications involve aseptic conditions for testing specific microorganisms and conducting the test in closed vessels avoiding evaporation losses, while fuel quantification using gas chromatography-flame ionization detection (GC-FID) is retained. It is suggested that the modified procedure should enable routine application for semi-volatile hydrocarbon-based fuels. GC-FID provides additionally valuable information on the alteration of fuel component patterns during biodegradation. The procedure was successfully tested using two bacteria (Pseudomonas aeruginosa and Sphingomonas sp.) and two yeasts (Moesziomyces sp. and Candida sp.) isolated from real diesel contamination cases. All tested microorganisms caused a significant degradation of diesel fuel achieving hydrocarbon degradation percentages ranging from 23% to 35%. Specific aspects on the test modification and prospects for further modification regarding targeted investigations in the field of fuel contamination by microorganisms are briefly discussed. KW - Biofouling KW - Bacteria KW - Fungi KW - CEC-L-103 KW - GC-FID KW - Reference organisms PY - 2018 DO - https://doi.org/10.1016/j.ibiod.2018.01.009 SN - 0964-8305 VL - 129 SP - 89 EP - 94 PB - Elsevier AN - OPUS4-44524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Silbernagl, Dorothee A1 - Toepel, J. A1 - Sturm, Heinz A1 - Broughton, William J. A1 - Sassaki, G. L. A1 - Gorbushina, Anna T1 - Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola N2 - Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10-6 m2 s-1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below. KW - Corrosion KW - EPS KW - Melanised microcolonial fungi (MCF) KW - Pullulan KW - Sub-aerial biofilms (SAB) KW - α-1,4- and α-1,6-glucans KW - AFM cantilever vibration KW - Nanoviscosity KW - Nanocorrosion of aluminium and silicon PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435910 DO - https://doi.org/10.1007/s00792-017-0984-5 SN - 1433-4909 SN - 1431-0651 VL - 22 IS - 2 SP - 165 EP - 175 PB - Springer CY - Berlin AN - OPUS4-43591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Zahlreiche Widerspenstige: Steinlaus, Steinpilz, Steinbiofilm, Steinalge, Steinbakterium… T2 - Lange Nacht der Wissenschaften 2012 CY - Berlin, Germany DA - 2012-06-02 PY - 2012 AN - OPUS4-26312 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Del Carmen Montero-Calasanz, M. A1 - Göker, M. A1 - Rohde, M. A1 - Schumann, P. A1 - Pötter, G. A1 - Spröer, C. A1 - Gorbushina, Anna A1 - Klenk, H.-P. T1 - Geodermatophilus siccatus sp. nov., isolated from arid sand of the Saharan desert in Chad N2 - A novel Gram-positive, aerobic, actinobacterial strain, CF6/1T, was isolated in 2007 during environmental screening of arid desert soil in the Sahara near to Ourba, Chad. The isolate was found to grow best in a temperature range of 20–37 °C and at pH 6.0–8.5 and showed no NaCl tolerance, forming black-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics determined for the isolate match those previously described for members of the genus Geodermatophilus. The DNA G + C content of the novel strain was determined to be 74.9 mol %. The peptidoglycan was found to contain meso-diaminopimelic acid as the diagnostic diamino acid. The main phospholipids were determined to be phosphatidylethanolamine, phosphatidylinositol, phosphatidylcholine, diphosphatidylglycerol and traces of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose as the diagnostic sugar. The major cellular fatty acids were found to be the branched-chain saturated acids iso-C16:0 and iso-C15:0, as well as C17:1ω8c. The 16S rRNA gene sequence shows 97.5–97.9 % sequence identity with the four validly named or at least effectively published members of the genus: Geodermatophilus obscurus (97.5 %), Geodermatophilus arenarius (97.7 %), Geodermatophilus ruber (97.9 %) and Geodermatophilus nigrescens (97.9 %). Based on the results from this polyphasic taxonomic analysis and DNA–DNA hybridizations with all type strains of the genus, we propose that strain CF6/1T represents a novel species, Geodermatophilus siccatus, with the type strain CF6/1T = DSM 45419T = CCUG 62765T = MTCC 11414T. KW - Actinomycetes KW - Geodermatophilaceae KW - Taxonomy KW - Xerophiles KW - Phenotype microarray PY - 2013 DO - https://doi.org/10.1007/s10482-012-9824-x SN - 0003-6072 SN - 1572-9699 VL - 103 IS - 3 SP - 449 EP - 456 PB - Springer CY - Dordrecht AN - OPUS4-28082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Favet, J. A1 - Lapanje, A. A1 - Giongo, A. A1 - Kennedy, S. A1 - Aung, Y.-Y. A1 - Cattaneo, A. A1 - Davis-Richardson, A.G. A1 - Brown, C.T. A1 - Kort, R. A1 - Brumsack, H.-J. A1 - Schnetger, B. A1 - Chappell, A. A1 - Kroijenga, J. A1 - Beck, A. A1 - Schwibbert, Karin A1 - Mohamed, A.H. A1 - Kirchner, T. A1 - Dorr de Quadros, P. A1 - Triplett, E.W. A1 - Broughton, William J. A1 - Gorbushina, Anna T1 - Microbial hitchhikers on intercontinental dust: catching a lift in Chad N2 - Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health. KW - Aeolian KW - High throughput sequencing KW - Bodélé Depression KW - Republic of Chad KW - Wind erosion PY - 2013 DO - https://doi.org/10.1038/ismej.2012.152 SN - 1751-7362 SN - 1751-7370 VL - 7 SP - 850 EP - 867 PB - Nature Publishing Group CY - Basingstoke AN - OPUS4-28083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbiological colonization of materials as an indicator of the environmental change T2 - Konservierungswissenschaft und nachhaltige Entwicklung für die Erhaltung von Kunst- und Kulturgut - Auf dem Weg zum grünen Museum CY - Berlin, Germany DA - 2013-04-11 PY - 2013 AN - OPUS4-28085 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nai, Corrado A1 - Wong, Helen A1 - Pannenbecker, A. A1 - Broughton, William J. A1 - Benoit, I. A1 - De Vries, R.P. A1 - Gueidan, C. A1 - Gorbushina, Anna T1 - Nutritional physiology of a rock-inhabiting, model microcolonial fungus from an ancestral lineage of the chaetothyriales (ascomycetes) N2 - Rock-inhabiting black fungi [also microcolonial or meristematic fungi (MCF)] are a phylogenetically diverse group of melanised ascomycetes with distinctive morphological features that confer extensive stress tolerance and permit survival in hostile environments. The MCF strain A95 Knufia petricola (syn. Sarcinomyces petricola) belongs to an ancestral lineage of the order Chaetothyriales (class Eurotiomycetes). K. petricola strain A95 is a rock-inhabiting MCF and its growth requirements were studied using the 96-well plate-based Biolog™ System under ~1070 different conditions (osmotic stress, pH growth optima, growth factor requirements and nutrient catabolism). A95 is an osmotolerant, oligotrophic MCF that grows best around pH 5. Remarkably, A95 shows metabolic activity in the absence of added nitrogen, phosphorus or sulphur. Correlations could be drawn between the known nutrient requirements of A95 and what probably is available in sub-aerial systems (rock and other material surfaces). Detailed knowledge of A95's metabolic requirements allowed formulation of a synthetic medium that supports strong fungal growth. KW - Knufia petricola (syn. Sarcinomyces petricola) KW - A95 KW - Chaetothyriales (Eurotiomycetes) KW - Microcolonial fungi KW - Melanised rock-inhabiting fungi KW - Biolog™ system KW - Physiological characterisation PY - 2013 DO - https://doi.org/10.1016/j.fgb.2013.04.001 SN - 1087-1845 SN - 0147-5975 SN - 1096-0937 VL - 56 SP - 54 EP - 66 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-28865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Montero-Calasanz, M.d.C. A1 - Göker, M. A1 - Pötter, G. A1 - Rohde, M. A1 - Spröer, C. A1 - Schumann, P. A1 - Gorbushina, Anna A1 - Klenk, H.-P. T1 - Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand N2 - A novel Gram-strain positive, aerobic, actinobacterial strain, designated CF11/1T, was isolated from a sand sample obtained in the Sahara Desert, Chad. The black-pigmented isolate was aerobic and exhibited optimal growth from 25 to 35 °C at pH 6.0–8.0 and with 0–8 % (w/v) NaCl, indicating that it is a halotolerant mesophile. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The G+C content in the genome was 74.4 mol%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and a minor fraction of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone, and galactose was detected as a diagnostic sugar. The major cellular fatty acid was branched-chain saturated acid iso-C16:0. Analysis of 16S rRNA gene sequences showed 95.3–98.6 % pairwise sequence identity with the members of the genus Geodermatophilus. Based on phenotypic and chemotaxonomic properties, as well as phylogenetic distinctiveness, the isolate represents a novel species, Geodermatophilus africanus, with the type strain CF11/1T (DSM 45422 = CCUG 62969 = MTCC 11556). KW - Actinomycetes KW - Geodermatophilaceae KW - Taxonomy KW - Osmotolerant KW - Phenotype microarray PY - 2013 DO - https://doi.org/10.1007/s10482-013-9939-8 SN - 0003-6072 SN - 1572-9699 VL - 104 IS - 2 SP - 207 EP - 216 PB - Springer CY - Dordrecht AN - OPUS4-28868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De Hoog, G.S. A1 - Vicente, V.A. A1 - Gorbushina, Anna T1 - The bright future of darkness - the rising power of black fungi: black yeasts, microcolonial fungi, and their relatives PY - 2013 DO - https://doi.org/10.1007/s11046-013-9666-8 SN - 0369-299X SN - 0301-486X SN - 0027-5530 SN - 1573-0832 VL - 175 IS - 5-6 SP - 365 EP - 368 PB - Springer CY - Dordrecht AN - OPUS4-28869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Co-evolution of rock surfaces and their biofilms T2 - Einweihung der HELGES-Labore für die Geochemie der Erdoberfläche am Deutschen GeoForschungsZentrum CY - Potsdam, Germany DA - 2013-06-11 PY - 2013 AN - OPUS4-28884 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Bacterial Attachment to Poly[acrylonitrile-co-(2-methyl-2-propene-1-sulfonic acid)] T2 - MRS Spring Meeting & Exhibit 2013, Symposium NN: Multifunctional Biomaterials CY - San Francisco, CA, USA DA - 2013-04-01 PY - 2013 AN - OPUS4-28899 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Montero-Calasanz, M.d.C. A1 - Göker, M. A1 - Pötter, G. A1 - Rohde, M. A1 - Spröer, C. A1 - Schumann, P. A1 - Gorbushina, Anna A1 - Klenk, H.-P. T1 - Geodermatophilus normandii sp. nov., isolated from Saharan desert sand N2 - A novel Gram-reaction-positive actinobacterial strain, designated CF5/3T, was isolated from a sand sample obtained in the Sahara Desert, Chad. The greenish-black-pigmented isolate was aerobic and exhibited optimal growth from 25–40 °C at pH 6.0–10.0 with 0–1 % (w/v) NaCl. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G+C content of the genome of the novel strain was 75.5 mol%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diamino acid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and a minor fraction of phosphatidylglycerol. MK-9(H4) was the dominant menaquinone, and galactose was detected as a diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C15:0 and iso-C16:0. Analysis of 16S rRNA gene sequences showed 95.6–98.8 % pairwise sequence identity with the members of the genus Geodermatophilus. Based on phenotypic and chemotaxonomic properties, as well as phylogenetic distinctiveness, the isolate represents a novel species, Geodermatophilus normandii, with the type strain CF5/3T (=DSM 45417T=CCUG 62814T=MTCC 11412T). PY - 2013 DO - https://doi.org/10.1099/ijs.0.051201-0 SN - 1466-5026 SN - 1466-5034 VL - 63 IS - 9 SP - 3437 EP - 3443 PB - SGM CY - Reading AN - OPUS4-30220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Biofilme auf Photovoltaikanlagen T2 - 10. Workshop Photovoltaik-Modultechnik; TÜV Rheinland CY - Cologne, Germany DA - 2013-11-28 PY - 2013 AN - OPUS4-30636 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Montero-Calasanz, M.d.C. A1 - Göker, M. A1 - Pötter, G. A1 - Rohde, M. A1 - Spröer, C. A1 - Schumann, P. A1 - Klenk, H.-P. A1 - Gorbushina, Anna T1 - Geodermatophilus telluris sp. nov., an actinomycete isolated from Saharan desert sand N2 - A novel Gram-positive, multiloculated thalli-forming, aerobic, actinobacterial strain, CF9/1/1T, was isolated in 2007 during environmental screening for xerophilic fungi in arid desert soil from the Sahara desert, Chad. The isolate grew best at a temperature range of 20–35 °C and at pH 6.0–8.5 and with 0–4% (w/v) NaCl, forming black-coloured and irregular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G+C content of the novel strain was 75.4 mol%. The peptidoglycan contained meso-diaminopimelic acid as a diagnostic diamino acid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, a not yet structurally identified aminophospholipid and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose was a diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C16:0 and iso-C15:0. The 16S rRNA gene sequence of the isolate showed 94.6–97.0% sequence similarities with those of five members of the genus: Geodermatophilus ruber DSM 45317T (94.6%), Geodermatophilus obscurus DSM 43160T (94.8%), Geodermatophilus siccatus DSM 45419T (96.2%), Geodermatophilus nigrescens DSM 45408T (96.7%) and Geodermatophilus arenarius DSM 45418T (97.0%). Based on the evidence from this polyphasic taxonomic study, a novel species, Geodermatophilus telluris sp. nov., is proposed; the type strain is CF9/1/1T (=DSM 45421T=CCUG 62764T). PY - 2013 DO - https://doi.org/10.1099/ijs.0.046888-0 SN - 1466-5026 SN - 1466-5034 VL - 63 SP - 2254 EP - 2259 PB - SGM CY - Reading AN - OPUS4-28982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gorbushina, Anna A1 - Kacunko, S. A1 - Kacunko, S. ED - Gethmann, D. ED - Wagner, A. T1 - Luftstaub über den Meeren - Wie historische Staubproben Wissenschaftler und Künstler inspirieren PY - 2013 SN - 978-3-643-50491-3 N1 - Serientitel: Schnittstellen. Wissenschaft und Kunst im Dialog – Series title: Schnittstellen. Wissenschaft und Kunst im Dialog VL - 2 SP - 151 EP - 160 PB - LIT Verlag CY - Wien, Münster AN - OPUS4-28934 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - C., Ruibal A1 - L., Selbmann A1 - Serap, Avci A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna ED - Gorbushina, Anna T1 - Roof-Inhabiting Cousins of Rock-Inhabiting Fungi: Novel Melanized Microcolonial Fungal Species from Photocatalytically Reactive Subaerial Surfaces N2 - Subaerial biofilms (SAB) are an important factor in weathering, biofouling, and biodeterioration of bare rocks, building materials, and solar panel surfaces. The realm of SAB is continually widened by modern materials, and the settlers on these exposed solid surfaces always include melanized, stress-tolerant microcolonial ascomycetes. After their first discovery on desert rock surfaces, these melanized chaetothyrialean and dothidealean ascomycetes have been found on Mediterranean monuments after biocidal treatments, Antarctic rocks and solar panels. New man-made modifications of surfaces (e.g., treatment with biocides or photocatalytically active layers) accommodate the exceptional stress-tolerance of microcolonial fungi and thus further select for this well-protected ecological group. Melanized fungal strains were isolated from a microbial community that developed on highly photocatalytic roof tiles after a long-term environmental exposure in a maritime-influenced region in northwestern Germany. Four of the isolated strains are described here as a novel species, Constantinomyces oldenburgensis, based on multilocus ITS, LSU, RPB2 gene phylogeny. Their closest relative is a still-unnamed rock-inhabiting strain TRN431, here described as C. patonensis. Both species cluster in Capnodiales, among typical melanized microcolonial rock fungi from different stress habitats, including Antarctica. These novel strains flourish in hostile conditions of highly oxidizing material surfaces, and shall be used in reference procedures in material testing. KW - Microcolonial fungi KW - Multilocus phylogeny KW - Photocatalytic surfaces KW - Subaerial biofilms KW - Stress tolerance KW - Constantinomyces PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-455182 DO - https://doi.org/10.3390/life8030030 VL - 8 IS - 3 SP - 30 EP - 44 PB - MDPI CY - Basel, Schweiz AN - OPUS4-45518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Köster, M. A1 - Dippold, M. A. A1 - Nájera, F. A1 - Matus, F. A1 - Merino, C. A1 - Boy, J. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. T1 - Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale N2 - Microbial activity and functioning in soils are strongly limited by carbon (C) availability, of which a great proportion is released by living roots. Rhizodeposition and especially root exudates stimulate microbial activity and growth, and may shift the stoichiometric balance between C, N, and P. Thereby, exudates heighten microbial nutrient demand and acquisition of N and P from organic matter, leading to an increase in enzyme production. Aim of this study was to determine environmental controls of extracellular enzyme production, and hence on potential enzyme activities (Vmax) and substrate affinities (Km). To determine the controlling factors, we worked on four spatial scales from the microscale (i.e. rhizosphere) through the mesoscale (i.e. soil depth) and landscape scale (relief positions), and finally to the continental scale (1200 km transect within the Coastal Cordillera of Chile). Kinetics of seven hydrolyzing enzymes of the C, N, and P cycles (cellobiohydrolase, β‑glucosidase, β‑xylosidase, β‑N‑acetylglucosaminidase, leucine‑aminopeptidase, tyrosine‑aminopeptidase, and acid phosphatase) were related to soil texture, C and N contents, pH, and soil moisture via redundancy analysis (RDA). Potential activities of C, N, and P acquiring enzymes increased up to 7-times on the continental scale with rising humidity of sites and C and N contents, while substrate affinities simultaneously declined. On the landscape scale, neither Vmax nor Km of any enzyme differed between north and south slopes. From top- to subsoil (down to 120 cm depth) potential activities decreased (strongest of aminopeptidases under humid temperate conditions with up to 90%). Substrate affinities, however, increased with soil depth only for N and P acquiring enzymes. Affinities of cellobiohydrolase and β‑xylosidase, on the contrary, were 1.5- to 3-times higher in top- than in subsoil. Potential activities of N and P acquiring enzymes and β‑glucosidase increased form bulk to roots. Simultaneously, substrate affinities of N and P acquiring enzymes declined, whereas affinities of β‑glucosidase increased. These trends of activities and affinities in the rhizosphere were significant only for acid phosphatase. The RDA displayed a strong relation of potential activities of C and P acquiring enzymes and β‑N‑acetylglucosaminidase to C and N contents in soil as well as to the silt and clay contents. Aminopeptidase activity was mainly dependent on soil moisture and pH. We conclude that substrate availability for microorganisms mainly determined enzyme activity patterns on the continental scale by the humidity gradient. Patterns on the meso- and microscale are primarily controlled by nutrient limitation, which is induced by a shift of the stoichiometric balance due to input of easily available C by roots in the rhizosphere. KW - Extracellular enzymes KW - Stoichiometric homeostasis KW - Rhizosphere effect KW - Nutrient acquisition KW - Multi-scale study PY - 2018 DO - https://doi.org/10.1016/j.geoderma.2018.10.030 SN - 0016-7061 SN - 1872-6259 VL - 2019 IS - 337 SP - 973 EP - 982 PB - Elsevier B.V. AN - OPUS4-46829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A. A1 - Frings, P. J. A1 - Sobotka, R. A1 - Gorbushina, Anna A1 - von Blanckenburg, F. T1 - Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants N2 - In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is −0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (−2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (−0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants. KW - Cyanobacteria KW - Black fungi KW - Nostoc punctiforme KW - Knufia petricola KW - Magnesium PY - 2018 DO - https://doi.org/10.1021/acs.est.8b02238 SN - 1520-5851 SN - 0013-936X VL - 52 IS - 21 SP - 12216 EP - 12224 PB - ACS Publications AN - OPUS4-46832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gebhardt, Christopher A1 - Toepel, Jörg A1 - Barry, J. A1 - Munzke, N. A1 - Günster, Jens A1 - Gorbushina, Anna T1 - Monitoring microbial soiling in photovoltaic systems: A qPCR-based approach N2 - Soiling of photovoltaic (PV) systems compromises their performance causing a significant power loss and demanding periodical cleaning actions. This phenomenon raises great concerns in the solar energy field, thus leading to notable research efforts over the last decades. Soiling is caused by a dual action of dust deposition and biofouling. However, surprisingly, the microbiological contribution to PV soiling is often overlooked or underestimated. In this study, a variety of qPCR-based methods have been developed to quantify the microbial load of fungi, bacteria and phototrophs on PV panels. These protocols were evaluated by comparison with culturedependent methods, and were implemented with real solar plants for two years. The results show that the developed molecular methods are highly sensitive and reliable to monitor the microbial component of the soiling. Fungal biomass was clearly dominant in all analysed PV modules, while bacteria and phototrophs showed much lower abundance. Light microscopy and qPCR results revealed that melanised microcolonial fungi and phototrophs are the main biofilm-forming microorganisms on the studied solar panels. In particular, the fungal qPCR protocol is proposed as a useful tool for monitoring of PV soiling, and investigating the microbial contribution to specific soiling cases. KW - Solar panels KW - PV modules KW - Real-time qPCR KW - Bacteria KW - Fungi KW - Phototrophs PY - 2018 DO - https://doi.org/10.1016/j.ibiod.2017.12.008 SN - 0964-8305 VL - 129 SP - 13 EP - 22 PB - Elsevier Science AN - OPUS4-43892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 DO - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitova, M. A1 - Iliev, M. A1 - Nováková, A. A1 - Gorbushina, Anna A1 - Groudeva, V.I. A1 - Martin-Sanchez, Pedro Maria T1 - Diversity and biocide susceptibility of fungal assemblages dwelling in the Art Gallery of Magura Cave, Bulgaria N2 - Magura Cave, north-western Bulgaria, possesses valuable rock-art paintings made with bat guano and dated from the period between the Eneolithic and Bronze Ages. Since 2008, the Art Gallery is closed to the general public in order to protect the paintings from vandalism, microclimatic changes caused by visitors and artificial illumination, and the consequent growth of fungi and phototrophs. Nevertheless, some tourist visits are allowed under the supervision of cave managers. This study provides the first scientific report on cultivable fungal assemblages dwelling different substrata in the Art Gallery. A total of 78 strains, belonging to 37 OTUs (Ascomycota 81%, Zygomycota 13%, Basidiomycota 5%), were isolated in the study. This fungal diversity was clearly dominated by Penicillium (50% of strains) and Aspergillus (13%). The most relevant visible fungal colonies were detected in sediments rich in bat guano, where, besides Penicillium, other guanophilic fungi such as Mucor, Mortierella, Trichosporon and Trichoderma were dominant. Conversely, scarce fungi were detected on rock surface of painted walls. Based on the biocide susceptibility assay, octylisothiazolinone (OIT) and benzalkonium chloride (BAC) were effective inhibiting the in vitro growth of dominant fungal species in Magura Cave, when applied at concentrations ranged from 100 to 1,000 mg/L. These data provide a valuable knowledge about Magura fungi, and exemplify a type of preliminary test that may be conducted before planning any biocide treatment. However, considering the irreversible effects of biocides on the ecological balance in caves, and the low fungal contamination in painted walls of Magura Cave, there is no reason to use conventional biocides in this cave. Further studies, monitoring microbial communities and microclimatic parameters, should be conducted to improve the knowledge on microbial ecology in Magura Cave and possible human impacts, as well as to allow the early detection of potential microbial outbreaks. KW - Fungi KW - Rock-art caves KW - Biocides PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-397436 DO - https://doi.org/10.5038/1827-806X.46.1.2061 SN - 0392-6672 VL - 46 IS - 1 SP - 67 EP - 80 PB - Scholar Commons CY - Tampa, FL, USA AN - OPUS4-39743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noack-Schönmann, Steffi A1 - Bus, T. A1 - Banasiak, Ronald A1 - Knabe, Nicole A1 - Broughton, William J. A1 - Dulk-Ras, H.D. A1 - Hooykaas, P.J.J. A1 - Gorbushina, Anna T1 - Genetic transformation of Knufia petricola A95 - a model organism for biofilm-material interactions N2 - We established a protoplast-based system to transfer DNA to Knufia petricola strain A95, a melanised rock-inhabiting microcolonial fungus that is also a component of a model sub-aerial biofilm (SAB) system. To test whether the desiccation resistant, highly melanised cell walls would hinder protoplast formation, we treated a melanin-minus mutant of A95 as well as the type-strain with a variety of cell-degrading enzymes. Of the different enzymes tested, lysing enzymes from Trichoderma harzianum were most effective in producing protoplasts. This mixture was equally effective on the melanin-minus mutant and the type-strain. Protoplasts produced using lysing enzymes were mixed with polyethyleneglycol (PEG) and plasmid pCB1004 which contains the hygromycin B (HmB) phosphotransferase (hph) gene under the control of the Aspergillus nidulans trpC. Integration and expression of hph into the A95 genome conferred hygromycin resistance upon the transformants. Two weeks after plating out on selective agar containing HmB, the protoplasts developed cell-walls and formed colonies. Transformation frequencies were in the range 36 to 87 transformants per 10 µg of vector DNA and 106 protoplasts. Stability of transformation was confirmed by sub-culturing the putative transformants on selective agar containing HmB as well as by PCR-detection of the hph gene in the colonies. The hph gene was stably integrated as shown by five subsequent passages with and without selection pressure. KW - DNA transfer KW - Fungal cell-walls KW - Protoplasts KW - Hygromycin resistance KW - Black yeast KW - Sub-aerial biofilms KW - Stress-protective morphology KW - Ancestor of opportunistic pathogens & lichens PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-320840 UR - http://www.amb-express.com/content/4/1/80 DO - https://doi.org/10.1186/s13568-014-0080-5 SN - 2191-0855 VL - 4 SP - 80, 1 EP - 6 PB - Springer CY - Heidelberg AN - OPUS4-32084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbiota as the weathering engine T2 - Earth Shape: Earth Surface Shaping by Biota; Kick-off Meeting CY - GFZ, Potsdam, Germany DA - 2014-10-30 PY - 2014 AN - OPUS4-31921 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbial ecology of material surfaces and their biofilms: deserts at your doorstep N2 - Introduction. Throughout a remarkably long period land colonisation on Earth has been proceeding by biofilm growth on bare rock surfaces. This very long history of sub-aerial biofilm development resulted in a high degree of their specialisation in challenging environments including desert rocks and high mountain altitudes. Presently the solid substrate/atmosphere interface habitat is frequently anthropogenic and includes e.g. building surfaces as well as industrial energy-producing facilities like solar plants. Those can be looked upon as pseudodeserts inhabited by complex microbial communities metabolising under limited water availability and high sun irradiation. Aim. We intended to compare microbial settlers from sub-aerial biofilms that grow on photovoltaic panels and painted building facades surfaces to the known database of the rock-inhabiting fungi. Materials and methods. Characteristic organisms' that dominate specific rock-inhabiting as well as buildings' facades- and photovoltaic panel-dwelling communities were isolated, identified, and characterized by microbiological and molecular biological methods. Results. Melanised meristematic ascomycetes are the most enduring and numerous dwellers on sub-aerial rock, facade and solar panel surfaces. Obviously, environmental changes perturb sub-aerial biofilm development but over a number of seasons, these changes result in relatively stable microbial communities peculiar to this particular environmental niche. Conclusions. A broad selection of melanised meristematic ascomycetes is indicative of sub-aerial biofilm on all atmosphere-exposed surfaces and can thus be referred to as "reference organisms" for these habitats. Our experimental evidence confirms that colonization of such substrates is facilitated by a symbiosis between a photosynthesizing organism and a fungus that are equipped to cope with the stress associated with sub-aerial existence. Melanised ascomycetes possess a very special stress-tolerant life style that arises under the influence of atmosphere and the solid support. It should be pointed out, that (1) these biofilm communities cannot be considered as "primitive" ones regarding the very long history of their development and high degree of their specialization; and (2) symbiotically competent but free-living bacterial/fungal biofilms cannot be compared to lichen communities, evolving much later than biofilm ecosystems. A genetically tractable laboratory system that includes the key participants of sub-aerial biofilm ecosystems is currently used for the development of standard test procedures in material sciences. Keywords. Sub-aerial biofilms, rock-inhabiting melanised fungi, reference organisms, solar panels biofilms T2 - XVI. International Biodeterioration and Biodegradation Symposium; International Biodeterioation & Biodegradation Society CY - Lodz, Poland DA - 2014-09-03 PY - 2014 AN - OPUS4-31922 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Hauswand als Wüstenlandschaft: mikrobielle Besiedlung von luft-exponierten Oberflächen T2 - 2. Photokatalyse-Kolloqium; Fachverband angewandte Photokatalyse CY - Frankfurt am Main; Deutschland DA - 2014-10-02 PY - 2014 AN - OPUS4-31923 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noack-Schönmann, Steffi A1 - Spagin, Olga A1 - Gründer, Klaus-Peter A1 - Breithaupt, Mathias A1 - Günther, Achim A1 - Muschik, Bernd A1 - Gorbushina, Anna T1 - Sub-aerial biofilms as blockers of solar radiation: spectral properties as tools to charcterise material-relevant microbial growth N2 - Sub-aerial biofilms (SABs) are ubiquitous microbial communities that develop at the interface between hard surfaces and the atmosphere. Inherent SAB 'core-settlers' include phototrophic algae, cyanobacteria, heterotrophic bacteria and microcolonial fungi (MCF). SABs do not simply cover hard surfaces; they interact with them in myriads of ways and bind to the underlying substrate. Secretion of extracellular mucilage aids adhesion, while organic acids and acidic polysaccharides weather the surface. As protection against solar radiation, many members of the SAB consortia produce shielding pigments while the phototrophic inhabitants are laden with photosynthetic pigments. All absorb light of many wavelengths and in addition, the cells themselves scatter light. Both effects change the spectra of incoming radiation (including wavelengths that are converted to electricity by photovoltaic cells) and decrease its intensity. To quantify these effects on SABs as complex entities of organisms and pigments, we measured the spectral properties of model and natural biofilms transferred to glass. Here we show that SABs growing on solar panels and other substrates scatter incident radiation between 250 nm up to 1800 nm and block up to 70% of its transmission. Model biofilms have the advantage that their microbial components can be 'tuned' to resemble natural ones of different compositions thus providing a novel materials-testing tool. KW - Material-colonising microorganisms KW - Microcolonial fungi KW - Glass biodeterioration KW - Solar panels KW - Biofilm-impaired transmittance of radiation PY - 2014 DO - https://doi.org/10.1016/j.ibiod.2013.09.020 SN - 0964-8305 VL - 86 SP - 286 EP - 293 PB - Elsevier CY - Barking AN - OPUS4-30128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landsberger, Petra A1 - Boenke, Viola A1 - Gorbushina, Anna A1 - Rodenacker, K. A1 - Pierce, B.F. A1 - Kratz, K. A1 - Lendlein, A. T1 - Bacterial attachment on poly[acrylonitrile-co-(2-methyl-2-propene-1-sulfonic acid)] surfaces N2 - The influence of material properties on bacterial attachment to surfaces needs to be understood when applying polymer-based biomaterials. Positively charged materials can kill adhered bacteria when the charge density is sufficiently high but such materials initially increase the adherence of some bacteria such as Escherichia coli. On the other hand, negatively charged materials have been shown to inhibit initial bacterial adhesion, but this effect has only been demonstrated in relatively few biomaterial classes and needs to be evaluated using additional systems. Gradients in surface charge can impact bacterial adhesion and this was tested in our experimental setup. Moreover, the evaluation of bacterial adhesion to biomaterials is required to assess their potential for biological applications. Here, we studied the bacterial adhesion of E. coli and Bacillus subtilis on the surfaces of acrylonitrile-based copolymer samples with different amounts of 2-methyl-2-propene-1-sulfonic acid sodium salt (NaMAS) comonomer. The content related to NaMAS based repeating units nNaMAS varied in the range from 0.9 to 1.5 mol%. We found a reduced colonized area of E. coli for NaMAS containing copolymers in comparison to pure PAN materials, whereby the bacterial colonization was similar for copolymers with different nNaMAS amounts. A different adhesion behavior was obtained for the second tested organism B. subtilis, where the implementation of negative charges into PAN did not change the overall adhesion pattern. Furthermore, it was observed that B. subtilis adhesion was significantly increased on copolymer samples that exhibited a more irregular surface roughness. T2 - MRS Spring meeting 2013 CY - San Francisco, CA, USA DA - 01.04.2013 KW - Biomaterial KW - Biological KW - Polymer PY - 2013 DO - https://doi.org/10.1557/opl.2013.832 VL - 1569 IS - MRSS13-1569-NN15-13.R1 SP - 1 EP - 6 AN - OPUS4-30161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Wachsender Faktor der Energiewende: Biofilme auf Photovoltaikmodulen T2 - Vortrag, Universität Oldenburg CY - Oldenburg, Germany DA - 2014-04-29 PY - 2014 AN - OPUS4-30870 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Toepfer, I. A1 - Favet, J. A1 - Schulte, A. A1 - Schmölling, M. A1 - Butte, W. A1 - Triplett, E.W. A1 - Broughton, W.J. A1 - Gorbushina, Anna T1 - Pathogens as potential hitchhikers on intercontinental dust N2 - Desert dust seeds distant lands and waters with minerals as well as micro-organisms raising the question of whether this ancient phenomenon also spreads pathogens across the globe. Severe dust storms require strong winds blowing over land-masses that are largely devoid of vegetation, effectively limiting the scope for winds to raise pathogens into the air. Nevertheless, changing patterns of land-use, often driven by belligerency, result in refugees spreading to areas that were previously deemed barely habitable. With the help of the International Committee of the Red Cross, a number of sand/dust samples were collected from the Republic of Chad, some near refugee camps, others further removed from human influence. In parallel studies, we documented the micro-organisms present in these samples and used a number of the isolates here to test the effect of environmental constraints on their ability to survive intercontinental flight. We also added traditional pathogens to the palette of microbes and tested the effects of UV irradiation, desiccation and temperature on survival of both bacteria and fungi. A clear trend was obvious—those microbes that are coloured or able to form conidia or spores (in other words, those that are native to deserts) were well able to resist the imposed stresses. On the other hand, most pathogens were more sensitive to stresses than the environmental isolates. Toxin production in two species of Aspergillus was also investigated. Short-term desiccation (simulating environmental conditions during intercontinental travel) of sand amended with fungal spores containing sterigmatocystin leads to increased mycotoxin contents, but significant mycotoxin production was only possible under growth-permissive conditions, e.g. at higher humidity. It thus seems likely that an ever-decreasing fraction of the initial pathogen load survives as the dust recedes from its desert source and that those organisms that land on other continents are highly enriched in desert dwellers. KW - Chad KW - Desert sand KW - Sterigmatocystin KW - Aspergillus sydowii KW - A. versicolor PY - 2012 DO - https://doi.org/10.1007/s10453-011-9230-2 SN - 0393-5965 SN - 1573-3025 VL - 28 IS - 2 SP - 221 EP - 231 PB - Springer Science + Business Media B.V. CY - Dordrecht [u.a.] AN - OPUS4-24814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Montero-Calasanz, M.C. A1 - Göker, M. A1 - Pötter, G. A1 - Rohde, M. A1 - Spröer, C. A1 - Schumann, P. A1 - Gorbushina, Anna A1 - Klenk, H.-P. T1 - Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad N2 - A novel Gram-positive, aerobic, actinobacterial strain, CF5/4T, was isolated in 2007 during an environmental screening of arid desert soil in Ouré Cassoni, Chad. The isolate grew best in a temperature range of 28–40 °C and at pH 6.0-8.5, with 0-1 % (w/v) NaCl, forming brown-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content of the novel strain was 75.9 mol %. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C15:0 and iso-C16:0. The 16S rRNA gene showed 96.2–98.3 % sequence identity with the three members of the genus Geodermatophilus: G. obscurus (96.2 %), G. ruber (96.5 %), and G. nigrescens (98.3 %). Based on the chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization with the type strain of G. nigrescens, the isolate is proposed to represent a novel species, Geodermatophilus arenarius (type strain CF5/4T = DSM 45418T = MTCC 11413T = CCUG 62763T). KW - Xerophiles KW - Actinomycetes KW - Geodermatophilaceae KW - Taxonomy KW - Sahara desert PY - 2012 DO - https://doi.org/10.1007/s00792-012-0486-4 SN - 1431-0651 SN - 1433-4909 VL - 16 IS - 6 SP - 903 EP - 909 PB - Springer CY - Tokyo AN - OPUS4-26933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Material und Umwelt: Mikroben als Materialbesiedler T2 - GfKORR-Arbeitskreis "Mikrobiell beeinflusste Korrosion" der DECHEMA-Fachgruppe "Mikrobielle Materialzerstörung und Materialschutz" CY - Frankfurt am Main, Germany DA - 2011-10-21 PY - 2011 AN - OPUS4-24675 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Rock-inhabiting fungi and phototrophs on bare rock surfaces - laboratory model systems in geomicrobiology T2 - Institutskolloquium CY - Dresden, Germany DA - 2012-09-11 PY - 2012 AN - OPUS4-26467 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - MODEL ROCK BIOFILM: GENETIC AND MICROBIOLOGICAL EXPERIMENTS: Fungal growth on bare rock surfaces - where does the carbon come from? T2 - Fourth meeting of the ISHAM working groups on Black Yeasts and chromoblastomycosis: “Hidden Danger, Bright Promise” CY - Curitiba, Brazil DA - 2011-12-01 PY - 2011 AN - OPUS4-26468 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - DNA EXTRACTION METHODS, AS WELL AS GENOME ANALYSIS OF SEVERAL BLACK FUNGI :Genomic and molecular characterization of a model ascomycete ancestral to mutualistic and pathogen-rich fungal lineages (A95 Sarcinomyces petricola, Chaetothyriales) T2 - Fourth meeting of the ISHAM working groups on Black Yeasts and chromoblastomycosis: “Hidden Danger, Bright Promise” CY - Curitiba, Brazil DA - 2011-12-01 PY - 2011 AN - OPUS4-26469 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Nutritional physiology of Sarcinomyces petricola A95, a model black fungus to study primary successions in terrestrial ecosystems T2 - Fourth meeting of the ISHAM working groups on Black Yeasts and chromoblastomycosis: “Hidden Danger, Bright Promise” CY - Curitiba, Brazil DA - 2011-12-01 PY - 2011 AN - OPUS4-26470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Materials conservation for a sustainable development T2 - Workshop + Lehrveranstaltung: "Science and Past: Materials conservation for a sustainable development" CY - Zaragoza, Spain DA - 2012-11-13 PY - 2012 AN - OPUS4-27109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giongo, A. A1 - Favet, J. A1 - Lapanje, A. A1 - Gano, K.A. A1 - Kennedy, S. A1 - Davis-Richardson, A.G. A1 - Brown, C. A1 - Beck, A. A1 - Farmerie, W.G. A1 - Cattaneo, A. A1 - Crabb, D.B. A1 - Aung, Y.-Y. A1 - Kort, R. A1 - Brumsack, H.-J. A1 - Schnetger, B. A1 - Broughton, William J. A1 - Gorbushina, Anna A1 - Triplett, E.W. T1 - Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples N2 - Microbiological studies on the intercontinental transport of dust are confounded by the difficulty of obtaining sufficient material for analysis. Axenic samples of dust collected at high altitudes or historic specimens in museums are often so small and precious that the material can only be sacrificed when positive results are assured. With this in mind, we evaluated current methods and developed new ones in an attempt to catalogue all microbes present in small dust or sand samples. The methods used included classical microbiological approaches in which sand extracts were plated out on a variety of different media, polymerase chain reaction (PCR)-based amplification of 16S/18S rRNA sequences followed by construction of clone libraries, PCR amplification of 16S rRNA sequences followed by high-throughput sequencing (HtS) of the products and direct HtS of DNA extracted from the sand. A representative sand sample collected at Bahaï Wadi in the desert of the Republic of Chad was used. HtS with or without amplification showed the most promise and can be performed on ≤100 ng DNA. Since living microbes are often required, current best practices would involve geochemical and microscopic characterisation of the sample, followed by DNA isolation and direct HtS. Once the microbial content of the sample has been deciphered, growth conditions (including media) can be tailored to isolate the micro-organisms of interest. KW - Chad KW - Deserts KW - Eukaryota KW - 16S amplicons KW - Metagenomics PY - 2013 DO - https://doi.org/10.1007/s10453-012-9264-0 SN - 0393-5965 SN - 1573-3025 VL - 29 IS - 1 SP - 71 EP - 84 PB - Springer Science + Business Media B.V. CY - Dordrecht [u.a.] AN - OPUS4-27687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Del Carmen Montero-Calasanz, M. A1 - Göker, M. A1 - Broughton, W.J. A1 - Cattaneo, A. A1 - Favet, J. A1 - Pötter, G. A1 - Rohde, M. A1 - Spröer, C. A1 - Schumann, P. A1 - Klenk, H.-P. A1 - Gorbushina, Anna T1 - Geodermatophilus tzadiensis sp. nov., a UV radiation-resistant bacterium isolated from sand of the Saharan desert N2 - Three novel Gram-positive, aerobic, actinobacterial strains, CF5/2T, CF5/1 and CF7/1, were isolated in 2007 during environmental screening of arid desert soil in the Sahara desert, Chad. Results from riboprinting, MALDI-TOF protein spectra and 16S rRNA sequence analysis confirmed that all three strains belonged to the same species. Phylogenetic analysis of 16S rRNA sequences with the strains' closest relatives indicated that they represented a distinct species. The three novel strains also shared a number of physiological and biochemical characteristics distinct from previously named Geodermatophilus species. The novel strains' peptidoglycan contained meso-diaminopimelic acid; their main phospholipids were phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were the branched-chain saturated acids iso-C16:0 and iso-C15:0. Galactose was detected as diagnostic sugar. Based on these chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization between strain CF5/2T and the type strains of Geodermatophilus saharensis, Geodermatophilus arenarius, Geodermatophilus nigrescens, Geodermatophilus telluris and Geodermatophilus siccatus, the isolates CF5/2T, CF5/1 and CF7/1 are proposed to represent a novel species, Geodermatophilus tzadiensis, with type strain CF5/2T = DSM 45416 = MTCC 11411 and two reference strains, CF5/1 (DSM 45415) and CF7/1 (DSM 45420). KW - Geodermatophilaceae KW - Actinomycetes KW - Taxonomy KW - Radiation-resistant PY - 2013 DO - https://doi.org/10.1016/j.syapm.2012.12.005 SN - 0723-2020 VL - 36 IS - 3 SP - 177 EP - 182 PB - Elsevier CY - Amsterdam AN - OPUS4-28261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Mikrobiologische Simulation als Instrument der Schadensanalyse verschiedener Materialien T2 - Workshop "Schadensanalyse polymerbasierter Implantate als Basis für die wissensbasierte Biomaterialentwicklung" am Zentrum für Biomaterialentwicklung und Berlin-Brandenburger Zentrum für Regenerative Therapien, Helmholtz-Zentrum Geesthacht CY - Teltow, Germany DA - 2012-11-22 PY - 2012 AN - OPUS4-27268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Rock Biofilms T2 - Kollouium CY - Dübendorf, Switzerland DA - 2013-05-17 PY - 2013 AN - OPUS4-28482 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Reference Organisms in Materials Science: Why and How? T2 - 5th WMRIF General Assembly and Symposium “Materials meet life” CY - Dübendorf, Switzerland DA - 2013-05-12 PY - 2013 AN - OPUS4-28483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, C. A1 - Schwibbert, Karin A1 - Achazi, K. A1 - Landsberger, Petra A1 - Gorbushina, Anna A1 - Haag, R. T1 - Active antibacterial and antifouling surface coating via a facile one-step enzymatic cross-linking N2 - Prevention of microbial contamination of surfaces is one of the biggest challenges for biomedical applications. Establishing a stable, easily produced, highly antibacterial surface coating offers an efficient solution but remains a technical difficulty. Here, we report on a new approach to create an in situ hydrogel film-coating on glass surfaces made by enzymatic cross-linking under physiological conditions. The cross-linking is catalyzed by horseradish peroxidase (HRP)/glucose oxidase (GOD)-coupled cascade reactions in the presence of glucose and results in 3D dendritic polyglycerol (dPG) scaffolds bound to the surface of glass. These scaffolds continuously release H2O2 as long as glucose is present in the system. The resultant polymeric coating is highly stable, bacterial-repellent, and functions under physiological conditions. Challenged with high loads of bacteria (OD540 = 1.0), this novel hydrogel and glucose-amended coating reduced the cell viability of Pseudomonas putida (Gram-negative) by 100% and Staphylococcus aureus (Gram-positive) by ≥40%, respectively. Moreover, glucose-stimulated production of H2O2 by the coating system was sufficient to kill both test bacteria (at low titers) with >99.99% Efficiency within 24 h. In the presence of glucose, this platform produces a coating with high effectiveness against bacterial adhesion and survival that can be envisioned for the applications in the glucose-associated medical/oral devices. KW - Antifouling KW - Surface coating KW - Biofilm KW - Bacterial adhesion PY - 2017 DO - https://doi.org/10.1021/acs.biomac.6b01527 SN - 1525-7797 SN - 1526-4602 VL - 18 IS - 1 SP - 210 EP - 216 AN - OPUS4-39003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Idealbiofilme als neues Testsystem: Laborsimulation der Gesteins- und Materialverwitterung T2 - Kolloquium des Instituts für Geologische Wissenschaften an der FU Berlin CY - Berlin, Germany DA - 2010-12-09 PY - 2010 AN - OPUS4-22751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Favet, J. A1 - Lapanje, A. A1 - Giongo, A. A1 - Kennedy, S. A1 - Aung, Y.-Y. A1 - Cataneo, A. A1 - Kort, R. A1 - Brumsack, H.-J. A1 - Schnetger, B. A1 - Triplett, E.W. A1 - Beck, A. A1 - Broughton, William J. A1 - Gorbushina, Anna T1 - Microbial hitchhikers on intercontinental dust - Chadian origins T2 - VAAM-Jahrestagung 2011 CY - Karlsruhe, Germany DA - 03.04.2011 KW - Intercontinental dust KW - Desert soil PY - 2011 SN - 0947-0867 IS - EMP114 SP - 118 PB - Spektrum, Akad. Verl. AN - OPUS4-23629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Gesteinsbesiedelnde Pilze als Modellorganismen T2 - Vortrag CY - Rostock, Germany DA - 2011-04-14 PY - 2011 AN - OPUS4-23560 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Mikrobiologische Perspektiven der Materialkunde T2 - Fraunhofer-Kolloquium am Fraunhofer-Institut für Werkstoffmechanik IWM CY - Halle (Saale), Germany DA - 2011-03-22 PY - 2011 AN - OPUS4-23459 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Weise, Frank A1 - Gorbushina, Anna T1 - Entwicklung und Überprüfung von Einhausungssystemen für außenexponierte Marmorobjekte - Schlossbrückenfigur, Unter den Linden in Berlin T2 - Abschlusskolloquium des DBU-Projekts "Entwicklung und Überprüfung von Einhausungssystemen zur Reduzierung umweltbedingter Schädigungen von außenexponierten Marmorobjekten" CY - Berlin, Germany DA - 2010-10-29 PY - 2010 AN - OPUS4-22483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gorbushina, Anna A1 - Kempe, A. A1 - Rodenacker, K. A1 - Jütting, U. A1 - Altermann, W. A1 - Stark, R.W. A1 - Heckl, W.M. A1 - Krumbein, W.E. T1 - Quantitative 3-dimensional image analysis of mineral surface modifications - chemical, mechanical and biological N2 - Three principally different mechanisms contribute to the wear-down process of mineral aggregates in sedimentary environments: (1) mechanical abrasion by forces of wind and water and by floating or saltating neighbouring grains, (2) chemical attack and dissolution by fluids, and (3) physical bioerosion and chemical biocorrosion. It is however, difficult to attribute the specific surface changes to specific environments and processes. Quartz sand grains from subaerial and subaquatic environments were analysed by atomic force microscopy (AFM) for traces of natural and experimental aeolian, aquatic and biological wear-down processes. Quantitative topographical parameters of surface alterations were extracted from topography data by non-linear methods derived from digital image analysis. These parameters were examined by multivariate statistic, yielding three well-distinguishable groups. Morphological surface alterations dominated by subaerial, subaquatic and by biological impact could be differentiated. The method may also be used for the detection of aeolian, subaquatic, and biological modification of sedimentary grains and rock surfaces in extraterrestrial environments, and for assessment of environmental damage on monuments and buildings. KW - Sediment grain corrosion KW - Chemical grain pitting KW - Biological grain pitting KW - Aquatic grain corrosion KW - Biopitting KW - Weathering KW - Surface analysis KW - Nano-structure of grain and mineral surfaces PY - 2011 DO - https://doi.org/10.1080/01490451.2010.490077 SN - 0149-0451 VL - 28 SP - 1 EP - 13 PB - Crane, Russak & Co. CY - New York, NY, USA AN - OPUS4-23058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life in the Dust: Historic Samples and Modern Microbial Hitchhikers T2 - Symposium der Arbeitsgemeinschaft "Wissenschaft und Kunst" der Österreichischen Forschungsgemeinschaft am Institut für Architekturtheorie, Kunst und Kulturwissenschaften an der TU Graz CY - Graz, Austria DA - 2011-05-20 PY - 2011 AN - OPUS4-23728 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna A1 - Toepel, Jörg T1 - Quantification of microbial load in diesel storage tanks using culture- and qPCR-based approaches N2 - Microbial contamination of fuels, associated with a wide variety of bacteria and fungi, leads to decreased product quality and can compromise equipment performance by biofouling and microbiologically influenced corrosion of pipelines and storage tanks. Detection and quantification of biomass are critical in monitoring fuel systems for an early detection of microbial outbreaks. The aims of this study are (i) to quantify bacterial and fungal contamination in samples from diesel storage tanks of petrol stations, using both culture dependent- and culture independent (qPCR) approaches, and (ii) to analyse the diversity of cultivable diesel-contaminating microorganisms with the purpose to create a strain collection for further use in biodeterioration experiments. Both methodological approaches revealed a high microbial contamination in all studied samples, with the bacterial load being much higher than the fungal load. The diversity of cultivable microorganisms was rather low. Based on criteria of abundance and fuel degradation potential, the most relevant microorganisms were identified as bacteria of genera Bacillus, Citrobacter, Burkholderia and Acetobacter, the filamentous fungi Paecilomyces variotii and Pseudallescheria boydii, and a Dipodascaceae yeast. Furthermore the validity and utility of qPCR-based methods are discussed. KW - Fuel contamination KW - Biofouling KW - Cultivation KW - Real-time qPCR KW - Bacteria KW - Fungi PY - 2016 DO - https://doi.org/10.1016/j.ibiod.2016.04.009 SN - 0964-8305 SN - 1879-0208 VL - 126 SP - 216 EP - 223 PB - Elsevier Ltd. AN - OPUS4-41260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Teixeira, M.M. A1 - Moreno, L.F. A1 - Stielow, B.J. A1 - Muszewska, A. A1 - Hainaut, M. A1 - Gonzaga, L. A1 - Abouelleil, A. A1 - Patan, J.S.L. A1 - Priest, M. A1 - Souza, R. A1 - Ferreira, K.S. A1 - Zeng, Q. A1 - da Cunha, M.M.L. A1 - Gladki, A. A1 - Barker, B. A1 - Vicente, V.A. A1 - de Souza, E.M. A1 - Almeida, S. A1 - Henrissat, B. A1 - Vasconelos, A.T.R. A1 - Deng, S. A1 - Vogelmayr, H. A1 - Moussa, T.A.A. A1 - Gorbushina, Anna A1 - Felipe, M.S.S. A1 - Cuomo, C.A. A1 - de Hoog, G.S. T1 - Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota) N2 - The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sexrelated genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi. KW - Black yeast KW - Comparative genomics KW - Chaetothyriales KW - Ecology KW - Evolution KW - Herpotrichiellaceae KW - Phylogeny PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-408720 DO - https://doi.org/10.1016/j.simyco.2017.01.001 SN - 1872-9797 VL - 86 IS - 1 SP - 1 EP - 28 PB - Elsevier CY - Amsterdam AN - OPUS4-40872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Biofilms on solar panel surfaces – new materials, long-known colonisers N2 - Simple, microbial biofilms have prevailed since life began on Earth. Biofilms form at the interfaces of solids with gases or liquids and have multiple effects on Substrate and element cycles. In geobiological terms, the most interesting microbial communities are those that form on solids exposed to air (subaerial). Microbial colonisers of the atmosphere-lithosphere interface include algae, cyanobacteria, fungi as well as heterotrophic bacteria and they have colonised virtually every rock surface throughout the entire geological history of the Earth. In addition to sequestering carbon, sub-aerial biofilms (SABS) actively participate in rock weathering. Rock-inhabiting SABs are the primary settlers on lava following volcanic eruptions and on rocks following the retreat of glaciers. SABs especially dominate hostile environments in which growth of higher Vegetation is restricted especially in deserts, polar- and alpine regions. SABs are the primary colonisers of lithospheric (e.g. rocks) and anthropogenic Substrates (buildings, monuments, solar panels, etc.). Life at the solid material/atmosphere interface influences and is affected by both the underlying Substrate and the microclimate surrounding it. Although subaerial life is ubiquitous, how SABs develop and importantly degrade underlying Substrates can only be clarified in well-controlled experiments that often involve simplified model Systems, So far, biofilm development on solar panels has been studied using; (i) metagenomics; (ii) in situ microscopy; and (iii) classical microbiological methods that are both qualitative and quantitative. Here we suggest that solar panel biofilms are accessible and highly relevant objects to study microbial ecology, geobiology and biodeterioration. T2 - 7th Congress of European Microbiologists (FEMS 2017) CY - València, Spain DA - 09.07.2017 KW - SABs KW - Biodeterioration KW - Biofilm KW - Solar panel PY - 2017 AN - OPUS4-41189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Studying colonization of stone surfaces – what can we learn from model biofilms growing in flow-through chambers? N2 - Soil formation on weathering rock surfaces is intrinsically connected with the development of primary microbial colonization at the atmosphere-lithosphere interface. A great number and variety of microorganisms is involved in these microbial communities, which are dominated by fungi, algae, cyanobacteria and heterotrophic bacteria. Rock-inhabiting life is ubiquitous on rock surfaces all around the world, but the laws of its establishment, and more important, quantification of its biodeterioration and geological input are possible only in well-controlled and simplified laboratory models. Here we would like to compare two model rock biofilm consisting of the heterotrophic and the phototrophic interacting partners. In the present work the growth of these model biofilms on diverse materials with different physical and chemical properties was investigated under well-controlled laboratory conditions. To clarify the role of environmental factors, the parameters temperature, light intensity and relative humidity were varied in growth test series. For an accelerated substrate colonization and to increase the biomass yield different flow-through chambers systems with semi-continuous cultures have been applied, simulating weathering conditions like flooding, desiccation and nutrient input. The biofilm development was studied by (i) confocal laser scanning and electron microscopy and (ii) qualitatively and quantitatively with respect to cell forms and biomass. A correlation between the presence of the model biofilm and mineral surface alteration as well as geochemical tracers of weathering were followed on various rock substrates (with differing geochemistry, porosity etc) exposed in another flow-through chamber, filled with crushed rock material. Under mentioned environmental conditions different types of flow-through chambers have been used and will be compared. T2 - Technoheritage CY - Cadiz, Spain DA - 21.05.2017 KW - Biofilm KW - Biodeterioration PY - 2017 AN - OPUS4-41136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Chizhikova, N. P. A1 - Lessovaia, S. N. A1 - Gorbushina, Anna ED - Frank-Kamenetskaya, O. V. ED - Panova, E. G. ED - Vlasov, D. Y. T1 - Biogenic weathering of mineral substrates (Review) N2 - A biological impact on weathering was recognized already at the beginning of the twentieth century, when biochemical influence of the lichen growth on rocks was convincingly demonstrated. Later it was shown that the progress of solid rock weathering initiated by biological colonization was affected by the initial porosity system and sensitivity of mineral association. In the meantime a considerable amount of diverse scientific data confirm the importance of biological rock colonizers (lichens and free-living rock biofilms) in mineral material dynamics as they occur at the atmosphere-exposed rock surfaces on local as well as global scale. Subaerial rock biofilms—microbial ecosystem including free-living heterotrophic and phototrophic settlers of bare rock surfaces—are characteristic for the first stage of primary succession of terrestrial ecosystems on mineral substrates. These cultivable and free-living communities are dominated by fungi and set the stage for the later development of a lichen cover, but in comparison to lichens also represent a new tool for laboratory experimentation and thus open a new stage of work in geomicrobiology. The Minerals sensitivity to microbially induced biological weathering can be demonstrated by studies of natural samples as well as by the laboratory mesocosm experiments. KW - Liches KW - Biofilms KW - Minerals KW - Transformations PY - 2016 SN - 9783319249872 SN - 9783319249858 DO - https://doi.org/10.1007/978-3-319-24987-2_2 SN - 2193-8571 SP - Part I, 7 EP - 14 PB - Springer International Publishing AN - OPUS4-35677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna A1 - Kunte, Hans-Jörg A1 - Toepel, Jörg T1 - A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae N2 - A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms. KW - Microbial contamination KW - Real-time quantitative PCR KW - Microbiologically influenced corrosion; KW - Diesel biodeterioration KW - Fouling KW - Indicator PY - 2016 DO - https://doi.org/10.1080/08927014.2016.1177515 SN - 0892-7014 VL - 32 IS - 6 SP - 635 EP - 644 PB - Taylor & Francis Group CY - Abingdon AN - OPUS4-37337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seiffert, Franz A1 - Bandow, Nicole A1 - Kalbe, Ute A1 - Milke, R. A1 - Gorbushina, Anna T1 - Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns N2 - Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterized by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonization of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1–6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 μM thiamine-hydrochloride (90 μL min−1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: (i) analysing the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragments/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favored a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analyzed. KW - Biotic weathering KW - Flow-through columns KW - Plagioclase KW - K-feldspar KW - Granite PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-373395 DO - https://doi.org/10.3389/feart.2016.00031 SN - 2296-6463 VL - 4 SP - Article 31, 1 EP - 10 PB - Frontiers in Earth Science CY - Lausanne AN - OPUS4-37339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Some like it on the rocks: mineral-weathering fungi with manifold protective pigments N2 - The interface between materials and the environment is populated by microorganisms which organize on surfaces to form specially adapted and resistant microbial associations, so-called biofilms. Surface-bound biofilm growth is associated with substantial secretion of metabolic products that can significantly influence material corrosion. Here, a group of material-inhabiting fungi are presented, which colonize and weather air-exposed materials such as building façades, roofs and solar systems. A selected model fungus is used to carry out genetic and molecular biology experiments, which are microbiologically cutting-edge and allow for the development of novel time-saving techniques for material testing. The degree of material damage under the influence of this model fungus shows a measure of the aggressiveness of the biofilm under defined environmental conditions - and thus explores fundamental components of the interaction between material and biofilm. T2 - GZMB-Kolloquium Mikrobiologie/Genetik CY - Göttingen, Germany DA - 05.07.2016 KW - Microcolonial fungi KW - Sub-aerial biofilms KW - Knufia petricola PY - 2016 AN - OPUS4-37381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Some like it on the rocks: mineral-weathering fungi with manifold protective pigments N2 - The interface between materials and the environment is populated by microorganisms which organize on surfaces to form specially adapted and resistant microbial associations, so-called biofilms. Surface-bound biofilm growth is associated with substantial secretion of metabolic products that can significantly influence material corrosion. Here, a group of material-inhabiting fungi are presented, which colonize and weather air-exposed materials such as building façades, roofs and solar systems. A selected model fungus is used to carry out genetic and molecular biology experiments, which are microbiologically cutting-edge and allow for the development of novel time-saving techniques for material testing. The degree of material damage under the influence of this model fungus shows a measure of the aggressiveness of the biofilm under defined environmental conditions - and thus explores fundamental components of the interaction between material and biofilm. T2 - Kolloquium Bodenkunde CY - Göttingen, Germany DA - 06.07.2016 KW - Microcolonial fungi KW - Sub-aerial biofilms KW - Knufia petricola PY - 2016 AN - OPUS4-37382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the Rocks: A simple genetically tractable model system to study fungus-rock interactions T2 - Arbeitsgruppenseminar Pathologie & Biochemie CY - University de Parana, Brazil DA - 2015-11-09 PY - 2015 AN - OPUS4-35091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Genetic Engineering of the Rock Inhabitant Knufia petricola Provides Insight Into the Biology of Extremotolerant Black Fungi N2 - Black microcolonial fungi (Ascomycetes from Arthonio-, Dothideo-, and Eurotiomycetes) are stress-tolerant and persistent dwellers of natural and anthropogenic extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) melanin in the multilayered cell walls. To understand how black fungi live, survive, colonize mineral substrates, and interact with phototrophs genetic methods are needed to test these functions and interactions. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a model for developing methods for genetic manipulation. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and the implementation of the three resistance selection markers genR (geneticin/nptII), baR (glufosinate/bar), and suR (chlorimuron ethyl/sur). The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter. The black-white screening due to the concurrent elimination of pks1 and phs1 (carotenoids) allows to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. The co-localization and interaction of the two K. petricola White Collar orthologs were demonstrated. Two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for a broad implementation in other fungi. This variety of genetic tools is opening a completely new perspective for mechanistic and very detailed study of expression, functioning and regulation of the genes/proteins encoded by the genomes of black fungi. KW - Microcolonial fungi KW - DHN melanin KW - Cloning vectors KW - Genetics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546192 DO - https://doi.org/10.3389/ffunb.2022.862429 SN - 2673-6128 VL - 3 PB - Frontiers Media CY - Lausanne AN - OPUS4-54619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Weise, Frank A1 - Rieffel, Y. A1 - Gorbushina, Anna T1 - Die Schlossbrücke Berlin - Schutz der Göttinnen N2 - Vielleicht nannten es die Berliner „Puppen putzen“, wenn in den 1880er Jahren die Marmorstatuen auf der Schlossbrücke vor dem Berliner Stadtschloss mit Bürste, Wasser und Seife von Staub, Ruß und Taubendreck befreit wurden. Soviel Pflege wurde diesen Göttinnen aus der griechischen Mythologie nicht immer zuteil. So haben Klima, Luftverschmutzung und der 2. Weltkrieg, wie bei anderen Kunstwerken auch, tiefe Spuren hinterlassen. Der Erhalt dieser zwischen 1847 und 1857 aufgestellten Skulpturen und vieler vergleichbarer Objekte im Stadtbild ist durch die auch heute weiter fortschreitende Schädigung des Marmors gefährdet. In den Jahren 2006 bis 2010 förderte die Deutsche Bundesstiftung Umwelt (DBU) ein Projekt zur „Entwicklung und Überprüfung von Einhausungssystemen zur Reduzierung umweltbedingter Schädigungen von außenexponierten Marmorobjekten mit dem Ziel des langfristigen Erhalts in situ an einem national bedeutenden Objektkomplex, den Schlossbrückenfiguren unter den Linden, Berlin“. Geleitet und restauratorisch betreut wurde das Projekt durch das Landesdenkmalamt (LDA) Berlin. Durch die Abteilung Strukturgeologie und Geodynamik (GZG) der Georg-August Universität Göttinnen wurden die Verwitterungsmechanismen des Marmors untersucht und auf dieser Basis Anforderungen an das Schutzsystem formuliert. Anhand von numerischen Simulationen des Instituts für Bauklimatik der Technischen Universität Dresden (TUD) wurde das bauphysikalische Konzept des Einhausungssystems optimiert. Die konstruktive Gestaltung eines Prototyps und des finalen Entwurfs erfolgte durch das Fachgebiet Konstruktives Entwerfen und Tragwerkslehre der Universität der Künste Berlin. Durch den Fachbereich Baustoffe der BAM erfolgten die Realisierung des Prototyps der Einhausung sowie ein umfangreiches Klimamonitoring an den Skulpturen. Anhand dieses interdisziplinären Projektes und ergänzt durch weitere Messungen wird gezeigt, mit welchen Methoden die für die Degradation von Marmor relevanten Mechanismen untersucht werden können. Die Erkenntnisse aus dem Projekt sind die Grundlage für die Entwicklung nachhaltiger Pflege- und Schutzkonzepte für die kulturhistorisch wertvollen Skulpturen. Nur mit solchen modernen konservatorischen Programmen können die Originalskulpturen im Berliner Stadtraum erlebbar bleiben. T2 - Workshop Kulturerhaltung - Vom Dampfkessel zu Nanomaterialien CY - Berlin, Germany DA - 17.11.2021 KW - Baustoffe KW - Marmor KW - Verwitterung KW - Kulturelles Erbe KW - Wintereinhausungen KW - Klima KW - Zerstörungsfreie Prüfung KW - Building materials KW - Marble KW - Degradation KW - Cultural heritage KW - Winter shelters KW - Climate KW - Nondestructive testing PY - 2021 SN - 2567-1251 VL - 3 SP - 87 EP - 96 PB - Druckerei G. Bohm CY - Berlin AN - OPUS4-54637 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdallah, Khaled A1 - Stock, S. C. A1 - Heeger, Felix A1 - Koester, M. A1 - Nájera, F. A1 - Merino, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Nitrogen Gain and Loss Along an Ecosystem Sequence: From Semi-desert to Rainforest N2 - Plants and microorganisms, besides the climate, drive nitrogen (N) cycling in ecosystems. Our objective was to investigate N losses and N acquisition strategies along a unique ecosystem-sequence (ecosequence) ranging from arid shrubland through Mediterranean woodland to temperate rainforest. These ecosystems differ in mean annual precipitation, mean annual temperate, and vegetation cover, but developed on similar granitoid soil parent material, were addressed using a combination of molecular biology and soil biogeochemical tools. Soil N and carbon (C) contents, δ15N signatures, activities of N acquiring extracellular enzymes as well as the abundance of soil bacteria and fungi, and diazotrophs in bulk topsoil and rhizosphere were determined. Relative fungal abundance in the rhizosphere was higher under woodland and forest than under shrubland. This indicates toward plants' higher C investment into fungi in the Mediterranean and temperate rainforest sites than in the arid site. Fungi are likely to decompose lignified forest litter for efficient recycling of litter-derived N and further nutrients. Rhizosphere—a hotspot for the N fixation—was enriched in diazotrophs (factor 8 to 16 in comparison to bulk topsoil) emphasizing the general importance of root/microbe association in N cycle. These results show that the temperate rainforest is an N acquiring ecosystem, whereas N in the arid shrubland is strongly recycled. Simultaneously, the strongest 15N enrichment with decreasing N content with depth was detected in the Mediterranean woodland, indicating that N mineralization and loss is highest (and likely the fastest) in the woodland across the continental transect. Higher relative aminopeptidase activities in the woodland than in the forest enabled a fast N mineralization. Relative aminopeptidase activities were highest in the arid shrubland. The highest absolute chitinase activities were observed in the forest. This likely demonstrates that (a) plants and microorganisms in the arid shrubland invest largely into mobilization and reutilization of organically bound N by exoenzymes, and (b) that the ecosystem N nutrition shifts from a peptide-based N in the arid shrubland to a peptide- and chitin-based N nutrition in the temperate rainforest, where the high N demand is complemented by intensive N fixation in the rhizosphere. KW - Nitrogen KW - Rhizosphere KW - Microbial abundance KW - Natural abundance of 15N KW - Nitrogen fixation KW - Nitrogen uptake PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543708 DO - https://doi.org/10.3389/fsoil.2022.817641 SN - 2673-8619 VL - 2 SP - 1 EP - 14 PB - Frontiers Media CY - Lausanne AN - OPUS4-54370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Schwarze Pilze – Wüstenbesiedler finden neue Lebensräume N2 - Schwarze mikrokoloniale Pilze besiedeln zunehmend von Menschen geschaffene Habitate, wie schadstoffbelastete Böden, Statuen, Gebäudefassaden und Dächer. Sie verfärben und zersetzen die Oberflächen von anfälligen Materialien oder reduzieren die Lichtausbeute von Solaranlagen. Die Biologie dieser Pilze und ihre Relevanz für die Materialforschung stehen im Fokus unserer Studien an der Bundesanstalt für Materialforschung und -prüfung (BAM). Mit einer Kollektion schwarzer Pilze, die von Solaranlagen isoliert wurden, bringen wir klima- und materialrelevante Biodiversität in den Stammbaum des Lebens. Die Überlebensstrategien dieser Organismen versuchen wir mit molekularbiologischen und genetischen Untersuchungsansätzen zu entschlüsseln. KW - Pilze KW - Genetik KW - Diversität PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541037 DO - https://doi.org/10.1007/s12268-021-1646-9 VL - 27 IS - 6 SP - 665 EP - 666 PB - Springer AN - OPUS4-54103 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Lessovaia, S.N. A1 - Gerrits, Ruben A1 - Gorbushina, Anna A1 - Polekhovsky, Y.S. A1 - Dultz, S. A1 - Kopitsa, G.G. ED - Frank-Kamenetskaya, O.V. ED - Vlasov, D. ED - Panova, E.G. ED - Lessovaia, S.N. T1 - Modeling Biogenic Weathering of Rocks from Soils of Cold Environments N2 - Morphologically simple and microbially dominated ecosystems termed “biofilms” have existed on Earth for a long period of biosphere evolution. A model biofilm combining one heterotroph and one phototroph component was used in a laboratory experiment to simulate biogenic weathering with two different specimens of basic rock samples from the soil profiles. The rocks fragments from the regions of cold environments of Eurasia,where abiotic physical processes, including rock disintegration initiated by freezing–thawing cycles, represent the most probable Scenario of rock weathering, were subjected to biological colonization. The rock Fragments were represented by dolerite and metagabbro amphibolites. Polished sections of the rock samples were inoculated with the model microbiological consortium of the oligotrophic fungus and the phototrophic cyanobacteria (biofilm). After 3 month runtime of the experiment the progress of rock weathering was derived from the growth of the biofilm on the rock surfaces. The model biofilm visualization on the rock surface of polished sections illustrated their stronger development namely on dolerite in comparison with metagabbro amphibolite. The findings confirmed the higher sensitivity of dolerite to biogenic weathering due to (i) mineral association, in which quartz was absent and (ii) porosity providing higher specific surface area for biotic—abiotic interaction influenced by the occurrence of micro-porosity in the rock. KW - Biogenic weathering KW - Rock leaching KW - Fractal structure KW - Biofilm formation KW - Internal pores PY - 2020 DO - https://doi.org/10.1007/978-3-030-21614-6_27 SP - 501 EP - 515 PB - Springer AN - OPUS4-51442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbiology / biofilms in material research and testing N2 - In the modern world there is an increased understanding that design and performance monitoring of materials have to be tested in connection to chemical, physical and (micro)biological challenges. A systematic study on how biofilms interact with materials and what could be done to engineer biofilms and/or materials in order to maximize the resistance of the material (surface) or the resistance the biofilm-modified material (bulk) is in strong need. In the Department “Materials and the Environment” of the BAM new experimental platform is being developed. With the help of different type of device for high throughput and microbiologically-controlled environment simulation we establish a new approach to clarify the mechanisms of biofilm/material interactions. Despite the focus on fundamental research, the main results of this project proposal will be transferable into material technology and construction chemistry and will influence the development of standardization in this topic. As the interactions of biofilms and materials have implications for most constructions as well as climate change, the results of the research generates additional value. T2 - Initialgespräch - DFG-Forschungsgruppe "Mikrobiologie/Biofilme" CY - Karlsruhe, Germany DA - 14.11.2019 KW - Biofilm KW - Microbiology KW - Black fungi KW - Solar panel PY - 2019 AN - OPUS4-50199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks - Black fungi from biofilms on material-atmosphere interface N2 - Interface between the atmosphere and mineral substrates is the oldest terrestrial habitat. Morphologically simple microbial biofilms were the first settlers on these inhospitable surfaces at times when the Earth was inhabited only by microorganisms and the solid substrates represented only by natural rock surfaces i.e. lithosphere. Miniature, self-sufficient microbial ecosystems continue to develop on subaerial (i.e. air-exposed) solid surfaces at all altitudes and latitudes where direct contact with the atmosphere and solar radiation occurs – on rocks, mountains, buildings, monuments, solar panels. All these sub-aerial biofilms develop under fluctuating and hostile conditions – and thus frequently harbour stress-tolerant black fungi inherently able to cope with the stresses of bright sunlight and constantly changing atmospheric conditions. Black fungi – a polyphyletic group of Ascomycetes– accumulate the dark pigment DHN melanin, diverse carotenoids and mycosporines in their cells and thus successfully colonise sunlight-flooded habitats from phyllosphere to rock surfaces. Various chemical and physical extremes and fluctuating environments belong to the challenges effectively mastered by black fungi. In our laboratory we isolate novel black fungi from man-made habitats like building materials and solar panels. Using Knufia petricola A95 as a model we conduct experiments to clarify interactions of black fungi with inorganic substrates. We use available mutants to determine the functional consequences of changes in the outer cell wall envelopes – from excreted EPS to layers of protective pigments. A genetic toolbox to manipulate this Chaetothyriales representative is in further development. Our long-term goal is to understand the fundamental mechanisms how black fungi are able (i) to adhere to dry atmosphere-exposed surfaces, (ii) to survive multiple stresses and (iii) to change the underlying substrates including rocks. T2 - International Symposium on Fungal Stress (ISFUS) CY - São José dos Campos, Brazil DA - 19.05.2019 KW - Subaerial biofilm KW - Melanins KW - Carotenoids KW - Knufia KW - Mineral weathering PY - 2019 AN - OPUS4-50200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Feldmann, Ines A1 - Schuessler, J.A. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Schott, J. T1 - How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution through attachment N2 - Free-living and mycorrhizal fungi are able to enhance the weathering of rock and other solid substrates. Deciphering the exact mechanisms of these natural processes requires their experimental simulation. Moreover, by performing these simulations with genetically amenable rock-weathering fungi, one can knock-out certain fungal traits and consequently identify their weathering-relevant function. Here, the effect of the rock-inhabiting fungus, Knufia petricola A95, on the dissolution kinetics of an Fe-bearing olivine (Mg1.86Fe0.19SiO4) is investigated at 25 °C and pH 6 using reproducible batch and mixed flow experiments. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, which produces more extracellular polymeric substances (EPS) than the wild type (WT), enables the comparative study of the role of melanin and EPS in olivine dissolution. In abiotic dissolution experiments, the olivine dissolution rate decreased considerably over time at pH 6 but not at pH 3.5. This inhibition of abiotic olivine dissolution at pH 6 was most likely caused by the in-situ oxidation of ferrous Fe and/or the precipitation of ferric hydroxides at the olivine surface. In corresponding biotic experiments at pH 6, both the wild type K. petricola and its melanin-deficient mutant ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe oxidation and precipitation were thus prevented and olivine dissolution proceeded faster than in the abiotic experiments. By sequestering Fe directly at the olivine surface, the attached wild type K. petricola cells were particularly efficient at preventing the oxidation of Fe at the mineral surface: the slowdown of olivine dissolution almost completely disappeared. The attachment capacity of these wild type cells is most likely mediated by wild type-specific EPS. Our presented experimental systems allow the oxidation of mineral-released Fe and include a rock-inhabiting fungus, thus simulating chemical, physical and biological conditions that set dissolution rates in a way that is relevant to natural ecosystems. KW - Black fungi KW - Bio-weathering KW - Forsterite KW - Knock-out mutant KW - Extracellular polymeric substances KW - Melanin Adhesion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509332 DO - https://doi.org/10.1016/j.gca.2020.05.010 VL - 282 SP - 76 EP - 97 PB - Elsevier Ltd. AN - OPUS4-50933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alder-Rangel, A. A1 - Idnurm, A. A1 - Brand, A. A1 - Brown, A. A1 - Gorbushina, Anna A1 - Kelliher, C. A1 - Campos, C. A1 - Levin, D. A1 - Bell-Pedersen, D. A1 - Dadachova, E. A1 - Bauer, F. A1 - Gadd, G. A1 - Braus, G. A1 - Braga, G. A1 - Brancini, G. A1 - Walker, G. A1 - Druzhinina, I. A1 - Pocsi, I. A1 - Dijksterhuis, J. A1 - Aguirre, J. A1 - Hallsworth, J. A1 - Schumacher, Julia A1 - Ho Wong, K. A1 - Selbmann, L. A1 - Corrochano, L. A1 - Kupiec, M. A1 - Momany, M. A1 - Molin, M. A1 - Requena, N. A1 - Yarden, O. A1 - Cordero, R. A1 - Fischer, R. A1 - Pascon, R. A1 - Mancinelli, R. A1 - Emri, T. A1 - Basso, T. A1 - Rangel, D. T1 - The Third International Symposium on Fungal Stress - ISFUS N2 - Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in Sao Jose dos Campos, Sao Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 20.05.2019 KW - Agricultural mycology KW - Fungal stress mechanisms and responses KW - Industrial mycology KW - Medical mycology PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.02.007 VL - 124 IS - 5 SP - 235 EP - 252 PB - Elsevier Ltd. AN - OPUS4-50953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Light sensing in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers ofPRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. Genetic tools for manipulating K. petricola exist and will be used to test this idea. KW - Botrytis cinerea KW - DHN melanin KW - Knufia petricola KW - Phyllosphere KW - Rock biofilm PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.01.004 VL - 124 IS - 5 SP - 407 EP - 417 AN - OPUS4-50786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Wirth, R. A1 - Schreiber, A. A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Schott, J, A1 - Benning, L.G. A1 - Gorbushina, Anna T1 - High-resolution imaging of fungal biofilm-induced olivine weathering N2 - Many microorganisms including free-living and symbiotic fungi weather minerals through the formation of biofilms on their surface. Weathering thus proceeds not only according to the mineral’s chemistry and the environmental conditions but also according to the local biofilm chemistry. These processes can be dissected in experiments with defined environmental settings and by employing genetic tools to modify traits of the fungal biofilm. Biofilms of the rock-inhabiting fungus Knufia petricola strain A95 (wild-type, WT) and its melanin-deficient mutant (ΔKppks) were grown on polished olivine sections in subaerial (air-exposed) and subaquatic (submerged) conditions. After seven months of interaction at pH 6 and 25°C, the fungus-mineral interface and abiotic olivine surface were compared using high resolution transmission electron microscopy (HRTEM). The abiotic, subaquatic olivine section showed a 25 nm thick, continuous amorphous layer, enriched in Fe and depleted in Si compared to the underlying crystalline olivine. This amorphous layer formed either through a coupled interfacial dissolution reprecipitation mechanism or through the adsorption of silicic acid on precipitated ferric hydroxides. Its thickness was likely enhanced by mechanical stresses of polishing. Directly underneath a fungal biofilm (WT and mutant alike), the surface remained mostly crystalline and was strongly etched and weathered, indicating enhanced olivine dissolution. The correlation between enhanced olivine dissolution and the absence of a continuous amorphous layer is a strong indication of the dissolution-inhibiting qualities of the latter. We propose that the fungal biofilm sequesters significant amounts of Fe, preventing formation of the amorphous layer and driving olivine dissolution onwards. The seemingly similar olivine surface underneath both WT and mutant biofilms illustrates the comparably insignificant role of specific biofilm traits in the weathering of olivine once biofilm attachment is imposed. Under subaerial conditions, the absence of water on the abiotic surface prohibited olivine dissolution. This was overcome by the water retention capacities of both the WT and mutant biofilm: the olivine surface underneath subaerial fungal biofilms was as weathered as the corresponding subaquatic olivine surface. Under the studied environmental settings, the effect of fungal biofilms on olivine weathering seems to be universal, independent of the production of melanin, the composition of extracellular polymeric substances (EPS) or air-exposure. KW - Bio-weathering KW - Forsterite KW - Extracellular polymeric substances KW - Melanin KW - Black fungi PY - 2021 DO - https://doi.org/10.1016/j.chemgeo.2020.119902 VL - 559 SP - 119902 PB - Elsevier B.V. AN - OPUS4-51403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis. The differences between the wild-type fungus and its melanin-deficient mutants were tested in geomicrobiological experiments and measured are now discussed in detail, with special accent on the possible effects of the mutation on EPS and other exuded substances. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - Ascomycetes KW - Fungal biofilms KW - Material surface colonisation KW - Genetics KW - Genomics KW - Extremophilic fungi PY - 2020 AN - OPUS4-50643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521517 DO - https://doi.org/10.1371/journal.pone.0246511 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - The story of how black fungi survive harsh conditions on sun-exposed desert rocks and material surfaces is fascinating. In the presentation examples of how knowledge of these organisms can be of practical value (e.g., in biodeterioration studies, such as on stone markers in cemeteries) would be given. Among other stories, the example of how roof tiles amended with a titanium oxide layers as a biocide actually selected for the black fungi will be told. A hypothesis about how these organisms would likely be found on solar panels and some early BAM work in that area will be presented. This then brings the connection to a study ripe for investigation in North Carolina. The talk presents the development of a study aiming at deciphering the influence of microbial biofilm formation on the energy conversion efficiency of solar photovoltaic panels or modules at two facilities (one facility under the impact of high intensity of animal agriculture and high deposition of ammonia from atmosphere and the other with low animal agriculture and lower atmospheric ammonia deposition) in North Carolina. The main hypothesis of the study is that microbial biofilm formation on solar photovoltaic panels will lead to significant decreases in energy conversion efficiency of solar photovoltaic modules and biofilm formation will also be accelerated by high ammonia concentration in the ambient atmosphere and high nitrogen deposition. T2 - Dr. Michael D. Aitken Symposium CY - Chapel Hill, NC, USA DA - 08.11.2019 KW - Black fungi KW - Solar panel KW - Biofilm PY - 2019 AN - OPUS4-50125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Koester, M. A1 - Boy, J. A1 - Godoy, R. A1 - Nájera, F. A1 - Matus, F.J. A1 - Merino, C. A1 - Abdallah, Khaled A1 - Leuschner, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Plant carbon investment infine roots and arbuscular mycorrhizal fungi: Across-biome study on nutrient acquisition strategies N2 - Plant resource acquisition strategies were ecosystem-specific with distinct mutualism with arbuscular mycorrhizal (AM) fungi. Root traits indicated conservative resource economics in the arid shrubland, but an acquisitive and self-sufficient (“do-it-yourself”) acquisition strategy in the semiarid coastal matorral, resulting in large carbon (C) investments (green). Forest plants with conservative root traits seem to intensively outsource their acquisition to AM fungi, compensating for lower uptake capacities of conservative roots (red line). High allocations of freshly assimilated C into AM fungal storage compounds illustrated the relevance of AM fungi as C sink, especially in the semiarid matorral. KW - Natural ecosystems KW - Temperate rain forest KW - Arbuscular mycorrhiza KW - Plant economic spectrum KW - Root economics space KW - 13CO2 pulse labeling PY - 2021 DO - https://doi.org/10.1016/j.scitotenv.2021.146748 VL - 781 SP - 146748 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Selbmann, L. A1 - Benkő, Z. A1 - Coleine, C. A1 - de Hoog, S. A1 - Donati, C. A1 - Druzhinina, I. A1 - Emri, T. A1 - Ettinger, C. L. A1 - Gladfelter, A. S. A1 - Gorbushina, Anna A1 - Grigoriev, I. V. A1 - Grube, M. A1 - Gunde-Cimerman, N. A1 - Karányi, Z. A. A1 - Kocsis, B. A1 - Kubressoian, T. A1 - Miklós, I. A1 - Miskei, M. A1 - Muggia, L. A1 - Northen, T. A1 - Novak-Babič, M. A1 - Pennacchio, C. A1 - Pfliegler, W. P. A1 - Pòcsi, I. A1 - Prigione, V. A1 - Riquelme, M. A1 - Segata, N. A1 - Schumacher, Julia A1 - Shelest, E. A1 - Sterflinger, K. A1 - Tesei, D. A1 - U’Ren, J. M. A1 - Varese, G. C. A1 - Vázquez-Campos, X. A1 - Vicente, V. A. A1 - Souza, E. M. A1 - Zalar, P. A1 - Walker, A. K. A1 - Stajich, J. E. T1 - Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES N2 - The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments. KW - Adaptation KW - Black fungi KW - Dothideomycetes KW - Eurotiomycetes KW - Extremophiles KW - Genomics KW - Metabolomics KW - Secondary metabolites KW - Stress conditions KW - Transcriptomics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519328 DO - https://doi.org/10.3390/life10120362 VL - 10 IS - 12 SP - 362 PB - MDPI CY - Basel AN - OPUS4-51932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tonon, C. A1 - Breitenbach, Romy A1 - Voigt, Oliver A1 - Turci, F. A1 - Gorbushina, Anna A1 - Favero-Longo, S. E. T1 - Hyphal morphology and substrate porosity -rather than melanization- drive penetration of black fungi into carbonate substrates N2 - Due to their ability to penetrate, deteriorate and discolour stone surfaces, rock-inhabiting black fungi represent a remarkable issue for cultural heritage conservation. Black microcolonial fungi (MCF) can also adapt to different environmental conditions, by converting from yeast-like morphology to a peculiar meristematic development with swollen cells (torulose hyphae, TH), to extremely thin structures (filamentous hyphae, FH). Furthermore, black MCF produce protective pigments: melanin, dark pigment particularly evident on light stone surfaces, and carotenoids. Black fungi produce melanin in critical, oligotrophic conditions as well as constitutively. Melanin function is mostly related to stress resistance and the ability of fungi to generate appressorial turgor to actively penetrate plant cells in pathogenic species. An involvement of melanins in stone surface penetration has been suggested, but not experimentally proved. In this work, we tested the role of hyphal melanisation in penetration mechanisms on the model black fungus Knufia petricola A95 in lab conditions. The wild-type and three mutants with introduced targeted mutations of polyketide-synthases (melanin production) and/or phytoene dehydrogenase (carotenoid synthesis) were inoculated on artificial carbonate pellets (pressed Carrara marble powder) of different porosity. After 5, 10, 17 and 27 weeks, hyphal penetration depth and spread were quantified on periodic acid Schiff-stained cross-sections of the pellets, collecting measurements separately for TH and FH. Droplet assay of the mutants on different media were conducted to determine the role of nutrients in the development of different fungal morphologies. In our in vitro study, the hyphal penetration depth, never exceeding 200 μm, was proven to be consistent with observed penetration patterns on stone heritage carbonate substrates. Pellet porosity affected penetration patterns of TH, which developed in voids of the more porous pellets, instead than actively opening new passageways. Oppositely, the thin diameter of FH allowed their penetration independently of substrate porosity. Instead, the long-hypothesized crucial role of melanin in black MCF hyphal penetration should be rejected. TH were developed within the pellets also by melanin deficient strains, and melanized strains showed an endolithic component of non-melanized TH. FH were non-melanized for all the strains, but deeply penetrated all pellet types, with higher penetration depth probably related to their potential exploratory (nutrient-seeking) role, while TH may be more related to a resistance to surface stress factors. In the melanin deficient strains, the absence of melanin caused an increased penetration rate of FH, hypothetically related to an earlier necessity to search for organic nutrients. KW - Biodeterioration KW - Bioreceptivity KW - Black microcolonial fungi KW - Marble KW - Stone cultural heritage KW - Stress tolerance PY - 2020 DO - https://doi.org/10.1016/j.culher.2020.11.003 VL - 48 SP - 244 EP - 253 PB - Elsevier Masson SAS CY - Paris, Amsterdam AN - OPUS4-51933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koester, M. A1 - Stock, S. C. A1 - Nájera, F. A1 - Abdallah, Khaled A1 - Gorbushina, Anna A1 - Prietzel, J. A1 - Matus, F. A1 - Klysubun, W. A1 - Boy, J. A1 - Kuzyakov, Y. A1 - Dippold, M. A. A1 - Spielvogel, S. T1 - From rock eating to vegetarian ecosystems — Disentangling processes of phosphorus acquisition across biomes N2 - Low-molecular-weight organic acids (LMWOAs) are crucial for the mobilization and acquisition of mineral phosphorus by plants. However, the role of LMWOAs in mobilizing organic phosphorus, which is the predominant phosphorus form in at least half of the world’s ecosystems, especially in humid climates, is unclear. The mechanisms of phosphorus mobilization by LMWOAs depend on climate, mainly precipitation, and shape the phosphorus nutrition strategies of plants. We disentangled the impact of roots and associated microorganisms on mechanisms of phosphorus cycling mediated by LMWOAs by studying soils along an ecosystem-sequence (ecosequence) from arid shrubland (~70 mm yr-1), and Mediterranean woodland (~370 mm yr-1) to humid-temperate forest (~1470 mm yr-1). Phosphorus speciation in soil was examined by X-ray absorption near edge structure analysis (XANES). LMWOAs were quantified as biological rock-weathering and organic phosphorus mobilization agents and compared to kinetics of acid phosphatase as a proxy for organic phosphorus mineralization. Calcium-bound phosphorus in topsoils decreased from 126 mg kg-1 in the arid shrubland, to 19 mg kg-1 in the Mediterranean woodland and was undetectable in the humid-temperate forest. In contrast, organic phosphorus in topsoils in close root proximity (0–2 mm distance to roots) was absent in the arid shrubland but raised to 220 mg kg-1 in the Mediterranean woodland and to 291 mg kg-1 in the humid-temperate forest. The organic phosphorus content in topsoils was 1.6 to 2.4 times higher in close root proximity (0–2 mm distance to roots) compared to bulk soil (4–6 mm distance to roots) in the Mediterranean woodland and humid-temperate forest, showing intensive phosphorus bioaccumulation in the rhizosphere. Redundancy analysis (RDA) revealed that LMWOAs were explained by the content of hydroxyapatite and variscite phosphorus-species in the arid shrubland, indicating that LMWOAs contribute to mineral weathering in this soil. LMWOA contents, phosphatase activity, and microbial biomass carbon correlated strongly with organic phosphorus in the humid-temperate forest soil, which implies a high relevance of LMWOAs for organic phosphorus recycling. In the Mediterranean woodland soil, however, oxalic acid correlated with organic phosphorus in the topsoil (suggesting phosphorus recycling), whereas in the subsoil malic and citric acid were correlated with primary and secondary phosphorus minerals (implying mineral weathering). We conclude that phosphorus acquisition and cycling depend strongly on climate and that the functions of LMWOAs in the rhizosphere change fundamentally along the precipitation gradient. In the arid shrubland LMWOAs facilitate biochemical weathering (rock eating), while in the humid-temperate forest their functions change towards supporting organic phosphorus recycling (vegetarian). KW - Rhizosphere processes KW - Phosphorus K-edge-XANES spectroscopy KW - Low-molecular-weight organic substances KW - Organic phosphorus breakdown KW - Biogenic weathering KW - Climate gradient PY - 2020 DO - https://doi.org/10.1016/j.geoderma.2020.114827 VL - 388 SP - 114827 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-51931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Oliver A1 - Knabe, Nicole A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - An advanced genetic toolkit for exploring the biology of the rock‑inhabiting black fungus Knufia petricola N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. KW - Subaerial biofilms KW - Biodeterioration KW - Fluorescent microscopy KW - CRISPR/Cas9 KW - RNA interference PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518601 DO - https://doi.org/10.1038/s41598-020-79120-5 VL - 10 IS - 1 SP - 22021 PB - Springer Nature AN - OPUS4-51860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Knabe, Nicole A1 - Gorbushina, Anna ED - Gurtler, V. ED - Trevors, J. T. T1 - Territories of rock-inhabiting fungi: Survival on and alteration of solid air-exposed surfaces N2 - Subaerial biofilms that are omnipresent at the interface between all solid substrates and the atmosphere are composed of a unique and widespread group of ascomycetes called rock-inhabiting fungi or microcolonial fungi (MCF), typically in communities with other microorganisms. While subaerial biofilms in toto have important roles in mineral weathering and biodeterioration of materials, methodological approaches to subaerial biofilm communities are diverse and frequently focussed on MCF. Here, we review the historical development of the research methods applied in the field and consider perspectives to increase our understanding of the biofilm-induced changes of solid substrate surfaces. KW - Biologically induced mineral weathering KW - Geobiology KW - Microcolonial fungi KW - Subaerial biofilm KW - Symbiosis PY - 2018 UR - https://linkinghub.elsevier.com/retrieve/pii/S0580951718300047 SN - 9780128146040 DO - https://doi.org/10.1016/bs.mim.2018.06.001 VL - 45 SP - Chapter 6, 145 EP - 169 PB - Elsevier AN - OPUS4-47181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Koester, M. A1 - Nájera, F. A1 - Boy, J. A1 - Matus, F. A1 - Merino, C. A1 - Abdallah, K. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Dippold, M. A. A1 - Kuzyakov, Y. ED - Nunan, Naoise T1 - Vegetation strategies for nitrogen and potassium acquisition along a climate and vegetation gradient: From semi-desert to temperate rainforest N2 - Nutrient acquisition strategies of plants regulate water flow and mass transport within ecosystems, shaping earth surface processes. Understanding plant strategies under current conditions is important to assess and predict responses of natural ecosystems to future climate and environmental changes. Nitrogen (N) and potassium (K) (re-)utilization from topsoil and their acquisition from subsoil and saprolite were evaluated in a continental transect, encompassing three study sites – an arid shrubland, a mediterranean woodland, and a temperate rainforest – on similar granitoid parent material in the Chilean Coastal Cordillera. The short-term (<1 year) plant N and K acquisition was traced with 15N and the K analogs rubidium and cesium. To do so, the tracers were either injected into topsoil, subsoil, or saprolite, in the immediate vicinity of eight individual plants per study site and injection depth. The long-term (>decades) K uplift by plants was investigated by the vertical distribution of exchangeable K+ and Na+. Recoveries of 15N and K analogs by arid shrubland plants were similar from topsoil, subsoil, and saprolite. Mediterranean woodland shrubs recovered the tracers primarily from topsoil (i.e., 89 % of recovered 15N and 84 % of recovered K analogs). Forest plants recovered the tracers from topsoil (15N = 49 %, K analogs = 57 %) and partially from greater depth: 38 % of recovered 15N and 43 % of recovered K analogs were acquired from subsoil and saprolite, respectively. Low nutrient accessibility in the topsoil (e.g., because of frequent droughts) drives shrubland plants to expand their N and K uptake to deeper and moister soil and saprolite. Woodland and forest plants dominantly recycled nutrients from topsoil. In the forest, this strategy was complemented by short-term uplift of N and K from depth. The vertical distribution of exchangeable K indicated long-term uplift of K by roots in all three sites. This highlighted that long-term K uplift from depth complements the nutrient budget across the continental transect. KW - Subsoil nutrient tracing KW - N and K analog tracer KW - Nutrient uplift and recyclin KW - Nutrient cycles KW - (Semi)arid to humid-temperate natural ecosys KW - Tems KW - Chilean Coastal Cordillera PY - 2022 DO - https://doi.org/10.1016/j.geoderma.2022.116077 SN - 0016-7061 VL - 425 SP - 2 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-56129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Gorbushina, Anna A1 - Plarre, Rüdiger A1 - Stephan, Ina T1 - Umweltsimulation an der BAM – Grundlegende Ansätze mit Beispielen aus der natürlichen Umwelt N2 - Drei grundlegend verschiedene Ansätze für Umweltsimulation werden an Beispielen illustriert: (i) Ganzheitlicher Ansatz - Nachstellen von Umweltmilieus im Labor Ziel ist hier das Nachstellen von (kombinierten) Umweltbedingungen im Labor; die Umweltparameter werden mit all ihren Wechselwirkungen aufgebracht. Hauptnutzen ist eine gegenüber der natürlichen Beanspruchung erhöhte Reproduzierbarkeit der Umweltbedingungen. Hat man sein Laborsetup entwickelt, ist es auf verschiedene Materialien anwendbar. Unter solchen Laborbedingungen ermittelte Lebensdauern sind dabei nicht auf die typischerweise sehr variablen Real-Umweltbedingungen übertragbar. (ii) Parametrisierter Ansatz - Ermittlung einzelner Materialempfindlichkeiten Hierbei werden im Labor die Wirkungen separater Umweltparameter auf Materialien nachgestellt. Für eine solche Separation der Einflussfaktoren ist insbesondere die Aufschlüsselung möglicher Wechselwirkungen der Umwelt-parameter (z.B. Mikroklima an bestrahlten Oberflächen) erforderlich. Einzelne (meist Alterungs-) Empfindlichkeiten können qualitativ nachgewiesen werden oder sogar – als Beanspruchungs-Wirkungs-Funktionen – quantifiziert werden, was einen wesentlichen Schritt in Richtung der Digitalisierung der Material¬prüfung darstellt. Insbesondere ist dann auch eine Lebensdauer-vorhersage für vorgegebene Zeitreihen der Beanspruchungs¬parameter umsetzbar. (iii) Rückwirkungen auf die Umwelt Umweltbeanspruchungen können zur Freisetzung von Schadstoffen in die Umwelt führen. Durch die Nachstellung kritischer, aber realitätsnaher Einsatzszenarien kann die Menge an freigesetzten Substanzen abgeschätzt werden. Egal, welcher Ansatz verfolgt wird – ein Vergleich mit der oder einer Real-beanspruchung ist unerlässlich, ebenso wie die Messdatenaufzeichnung (data logging) aller potenziell relevanten Beanspruchungsparameter während dieser Realbeanspruchung. Obwohl die naturnahe Umwelt – sowohl in der BAM als auch bei der GUS – gegenüber der technischen Umwelt eher untergeordnet auftritt, werden zur Illustration Beispiele aus der naturnahen Umwelt verwendet. T2 - 50. Jahrestagung der GUS CY - Online meeting DA - 23.03.2022 KW - Umweltsimulation PY - 2022 SN - 978-3-9818507-7-2 SP - 79 EP - 89 AN - OPUS4-55015 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 DO - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering N2 - The roles extracellular polymeric substances (EPS) play in mineral attachment and weathering were studied using genetically modified biofilms of the rock-inhabiting fungus Knufia petricola strain A95. Mutants deficient in melanin and/or carotenoid synthesis were grown as air-exposed biofilms. Extracted EPS were quantified and characterised using a combination of analytical techniques. The absence of melanin affected the quantity and composition of the produced EPS: mutants no longer able to form melanin synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, the melanin-producing strains attached more strongly to the mineral olivine and dissolved it at a higher rate. We hypothesise that the pullulan-related linkages, with their known adhesion functionality, enable fungal attachment and weathering. The released phenolic intermediates of melanin synthesis in the Δsdh1 mutant might play a role similar to Fe-chelating siderophores, driving olivine dissolution even further. These data demonstrate the need for careful compositional and quantitative analyses of biofilm-created microenvironments. KW - Biofilms PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549025 DO - https://doi.org/10.1038/s41529-022-00253-1 SN - 2397-2106 VL - 6 SP - 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-54902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Maria A1 - Paulo, Carlos A1 - Knabe, Nicole A1 - Sturm, Heinz A1 - Zaitsev, Vladimir A1 - Gorbushina, Anna T1 - Microscopic Raman study of fungal pigment using the genetically amenable rock inhabitant Knufia petricola as a model organism N2 - Fungal pigments such as melanin and carotenoids are distinctive markers of animal and plant pathogenic fungi as well as their environmental relatives. These complex pigments play important roles in pathogenicity and stress tolerance while also being useful as biomarkers. Accordingly, it is important to be able to identify in situ the pigments in black fungi, a group of clinical and environmental importance. In this study, wild-type and genetically modified strains of Knufia petricola A95 and wild fungal cells attached to ancient rock were investigated for their spectroscopic and microscopic Raman features and morphological appearance. Knockout mutants of melanin synthesis genes pks1 (polyketide synthase), sdh1 (scytalone dehydratase), and both pks1 and the carotenoid synthesis gene phd1 (phytoene desaturase) were studied We applied two different Raman microscopes using two lasers, with 633 nm and 488 nm wavelengths. We analyzed and compared Raman spectra between the measured reference substances and the mutant and wild-type strains. In the wild strain WT:A95, the peaks close to melanin peals were found at 1353 cm−1 and 1611 cm−1. There are no characteristic melanin peaks at 1580–1600 cm−1 and around 1350 cm−1 at the spectrum of the Δpks1/Δphd1 mutant and the Δsdh1 mutant. The Δpks1 mutant spectrum has the peaks at the beta-carotene v2 C-C in-plane stretch at 1155 cm−1 and v3 C-CH3 deformation at 1005 cm−1. The peaks of carotenoids and melanin were found in all mutants and the wild strain, except the Δpks1/Δphd1 mutant. Raman spectra allow for discrimination between the various pigments. Hence, interactions between natural fungal melanin, as well as other protective pigments, and complex environmental matrices can be characterized on a range of spatial and temporal scales. KW - Raman Spectroscopy KW - Instrumentation KW - Analytical Chemistry KW - Knufia petricola KW - Confocal microscopy KW - Atomic and Molecular Physics and Optics PY - 2023 DO - https://doi.org/10.1016/j.saa.2023.123250 SN - 1386-1425 VL - 303 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-58792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Black fungi on technosphere surfaces: new niches for roof-inhabiting cousins N2 - Human-made systems, also called “build environment” or “technosphere”, sustain human comfort as well as our industrial activities. These systems have become particularly widespread since the Industrial Revolution, i.e., since the 17th century. At the same time, these technical systems – buildings, monuments, energy production, transformation and transmission, water purification and supply systems - serve as new habitats for living organisms. Life is ubiquitously present on our planet since a very long time: the Earth is 4.54 billion years old and microbial communities have played a key role on our planet for 3.7 billion years. Once human-made system appeared, microorganisms became an integral part of all types of technosphere infrastructure as well. Here we will illustrate biosphere-technosphere interactions using a specific example of the black fungi and their impact on the efficiency of solar (photovoltaic) panels. This expanding renewable infrastructure for electricity generation is growing on all continents - and create a specific, arid habitat for stress-tolerant black fungi. Black fungi were once discovered in hot and cold natural deserts – and now belong to the persistent colonisers of human-made deserts of solar parks. This new niche is evolving an impressive biodiversity. So far more than 60 isolates of black fungi belonging to Arthoniomycetes, Eurotiomycetes and Dothideomycetes were obtained from solar panels in Europe and Americas. Here we will present the analysis of this emerging anthropogenic biodiversity. Opportunities for future research in the field include quantification of the microbial load on technosphere surfaces – along with characterisation of the corresponding microbial diversity. The strategy of precise measurement and characterisation will enable us to reliably determine the beneficial and harmful functions that living microorganisms play in the functioning of energy-generating systems – and technosphere in general. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2923 KW - Biosphere-technosphere interaction KW - Microbial communities KW - Solar parks PY - 2023 AN - OPUS4-58451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Manninger, Tanja A1 - von Werder, Julia A1 - Dehn, F. A1 - Gorbushina, Anna A1 - Meng, Birgit T1 - Bioreceptivity of concrete - A review N2 - Materials that support natural biodiversity on their surfaces can compensate for human activities that have a negative impact on nature and thus contribute to a carbon-neutral and nature-positive world. Specifically designing bioreceptive materials which favor the growth of biofilms on their surface is an approach complementing conventional, macroscopic green façades. But what exactly characterizes a bioreceptive substrate and how do biofilm and substrate interact? How and why does a spontaneous colonization and the formation of biofilms take place? What are biofilms and how can they be established in a laboratory setting? How can this existing knowledge be transferred to the artificial stone concrete so that this material can be tuned to increase (or decrease) its bioreceptivity? This review paper aims at summarizing the existing state of knowledge on bioreceptive concrete and pointing out inconsistencies and contradictions which can only be removed by more interdisciplinary research in the field. KW - Bioreceptivity KW - Biofilm KW - Green facades KW - Developing building materials KW - Surface interactions KW - Concrete PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581685 DO - https://doi.org/10.1016/j.jobe.2023.107201 SN - 2352-7102 VL - 76 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-58168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A. A1 - Brandhorst, Antonia K. M. A1 - Gorbushina, Anna A. A1 - Schumacher, Julia T1 - The Tet‑on system for controllable gene expression in the rock‑inhabiting black fungus Knufia petricola N2 - Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis(melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes. KW - Microcolonial fungi KW - Inducible promoter KW - Bimolecular fluorescence complementation KW - 2A peptide KW - CRISPR/ Cas9-mediated genome editing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607672 DO - https://doi.org/10.1007/s00792-024-01354-2 VL - 28 IS - 38 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-60767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Urban, Klaus A1 - Ackerhans, C. A1 - Gorbushina, Anna A. T1 - Analysis of Carbon and Nitrogen from Atmospheric Sources by Bulk Deposition Sampling at various locations in Germany N2 - Atmospheric deposition of particulate matter is an important indicator of air pollution and a significant factor in material surface fouling. The elemental composition of this nutrient-containing dust depends largely on the exposure region and time as well as on climate. Therefore, in this paper we report an analysis of atmospheric pollutions with a self-made low-cost bulk deposition sampler directed at sampling deposition via air transport and rainfall. We used the device in diverse environments - thus comparing an urban region, an area surrounded by forest and an area mainly dominated by agriculture. The total organic carbon (TOC) and total nitrogen (TN) amounts were selected as indicator parameters and analyzed in a biweekly rhythm for three and a half and two years, respectively. The TOC value responded to particulate matter in the urban area, especially significant were the influences of the New Year's firework in urban and pollen in the rural forest area. In contrast, the TN value was more under the influence of the nitrogen emissions in the agriculture-dominated area. However, the TN value did not correlate with the NOx values in the urban area because the atmospheric nitrogen emissions in the city might originate from various emission sources. Summarizing, the TOC and TN values of the self-made low-cost bulk deposition sampler were in good agreement with environmental events of their immediate surrounding. Moreover, the selected containers and sampling procedures are universally applicable to monitor and analyze organic as well as inorganic parameters (e.g. metal ions) of atmospheric deposition. KW - Passive sampling KW - Biomonitoring KW - Air Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609373 DO - https://doi.org/10.1016/j.envadv.2024.100583 SN - 2666-7657 VL - 17 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Catanzaro, Ilaria A1 - Gerrits, Ruben A1 - Feldmann, Ines A1 - Gorbushina, Anna A. A1 - Onofri, Silvano A1 - Schumacher, Julia T1 - Deletion of the polyketide synthase‐encoding gene pks1 prevents melanization in the extremophilic fungus Cryomyces antarcticus N2 - Cryomyces antarcticus, a melanized cryptoendolithic fungus endemic to Antarctica, can tolerate environmental conditions as severe as those in space. Particularly, its ability to withstand ionizing radiation has been attributed to the presence of thick and highly melanized cell walls, which—according to a previous investigation—may contain both 1,8‐dihydroxynaphthalene (DHN) and L‐3,4 dihydroxyphenylalanine (L‐DOPA) melanin. The genes putatively involved in the synthesis of DHN melanin were identified in the genome of C. antarcticus. Most important is capks1 encoding a non‐reducing polyketide synthase (PKS) and being the ortholog of the functionally characterized kppks1 from the rock‐inhabiting fungus Knufia petricola. The co‐expression of CaPKS1 or KpPKS1 with a 4′‐phosphopantetheinyl transferase in Saccharomyces cerevisiae resulted in the formation of a yellowish pigment, suggesting that CaPKS1 is the enzyme providing the precursor for DHN melanin. To dissect the composition and function of the melanin layer in the outer cell wall of C. antarcticus, non‐melanized mutants were generated by CRISPR/Cas9‐mediated genome editing. Notwithstanding its slow growth (up to months), three independent non‐melanized Δcapks1 mutants were obtained. The mutants exhibited growth similar to the wild type and a light pinkish pigmentation, which is presumably due to carotenoids. Interestingly, visible light had an adverse effect on growth of both melanized wild‐type and non‐melanized Δcapks1 strains. Further evidence that light can pass the melanized cell walls derives from a mutant expressing a H2B‐GFP fusion protein, which can be detected by fluorescence microscopy. In conclusion, the study reports on the first genetic manipulation of C. antarcticus, resulting in non‐melanized mutants and demonstrating that the melanin is rather of the DHN type. These mutants will allow to elucidate the relevance of melanization for surviving extreme conditions found in the natural habitat as well as in space. KW - Astrobiology KW - Black fungi KW - CRISPR/Cas9 KW - DHN melanin KW - Cryptoendolithism PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606599 DO - https://doi.org/10.1002/iub.2895 SN - 1521-6551 SP - 1 EP - 19 PB - Wiley AN - OPUS4-60659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A. T1 - From rocks to riches: Knufia petricola as model and expression platform N2 - Black fungi belong to different classes of Ascomycota but evolved similar morpho-physiological adaptations such as yeast-like growth and constitutive melanin formation to colonize extreme competition-free environments. They are ubiquitously found on air-exposed surfaces, from ancient marble monuments to modern solar panels. The rock inhabitant Knufia petricola was chosen to become a model for these extremotolerant black fungi. Plasmid-based and ribonucleoprotein-based CRISPR/Cas9 techniques were introduced to precisely introduce one to multiple double strand breaks into the DNA to modify, replace or add sequences to the genome either using the available selection marker systems (hygR, natR, genR, baR, suR) or by marker-free approaches. Multiplexing is very efficient, allowing for four or more simultaneous genome editing events. The newly generated cloning vectors containing the Tet on construct for doxycycline-controlled gene expression, and the validated sites in the K. petricola genome for color-selectable (pks1, phs1, ade2) or neutral insertion (igr1 to 5) of expression constructs complete the reverse genetics toolbox. One or multiple endogenous or heterologous genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides. We thus can express genes from synthetic clusters in a non-pigmented background (Δpks1/Δphs1). The fact that K. petricola only produces few secondary metabolites (DHN melanin, carotenoids, mycosporines and a siderophore) and plant cell-wall degrading enzymes but is capable to take the burden of acetyl-CoA-consuming metabolism and protein secretion renders K. petricola a promising host for the expression of heterologous genes encoding high-end secondary metabolites and enzymes. T2 - 12th International Mycological Congress (IMC12) CY - Maastricht, Netherlands DA - 11.08.2024 KW - Fungus KW - Genetic engineering KW - Heterologous gene expression KW - Cell factory PY - 2024 AN - OPUS4-60838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - Microfluidic Platform with Precisely Controlled Hydrodynamic Parameters and Integrated Features for Generation of Microvortices to Accurately Form and Monitor Biofilms in Flow N2 - ABSTRACT: Microorganisms often live in habitats characterized by fluid flow, and their adhesion to surfaces in industrial systems or clinical settings may lead to pipe clogging, microbially influenced corrosion, material deterioration, food spoilage, infections, and human illness. Here, a novel microfluidic platform was developed to investigate biofilm formation under precisely controlled (i) cell concentration, (ii) temperature, and (iii) flow conditions. The developed platform central unit is a single-channel microfluidic flow cell designed to ensure ultrahomogeneous flow and condition in its central area, where features, e.g., with trapping properties, can be incorporated. In comparison to static and macroflow chamber assays for biofilm studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes and have better environment control and smaller sample requirements. Flow simulations and experiments with fluorescent particles were used to simulate bacteria flow in the platform cell for calculating flow velocity and direction at the microscale level. The combination of flow analysis and fluorescent strain injection in the cell showed that microtraps placed at the center of the channel were efficient in capturing bacteria at determined positions and to study how flow conditions, especially microvortices, can affect biofilm formation. The microfluidic platform exhibited improved performances in terms of homogeneity and robustness for in vitro biofilm formation. We anticipate the presented platform to be suitable for broad, versatile, and high-throughput biofilm studies at the microscale level. KW - Topographical pattern KW - E. coli KW - Fluorescence KW - Bacteria trapping KW - Particle velocimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610450 DO - https://doi.org/10.1021/acsbiomaterials.4c00101 SN - 2373-9878 VL - 10 IS - 7 SP - 4626 EP - 4634 AN - OPUS4-61045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -