TY - JOUR A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Three-dimensional thermal expansion of neat and irradiated (U)HMWPE materials at elevated temperatures N2 - The thermal expansion of polymeric parts can be an issue in many applications where the available space is limited, or exact dimensions of the part are required. For this study, a device was designed and built that allowed measuring the thermal expansion simultaneously in all three spatial directions on cubic samples with real-scale dimensions (78 mm edge length). The results are shown between 25 °C and 125 °C for two PE materials, one HMWPE and one tempered UHMWPE, for non-irradiated samples as well as cubes that have been irradiated with 100 and 400 kGy. The results measured with the new device were very similar to those measured with conventional thermo-mechanical analysis equipment and to literature data of UHMWPE. The HMWPE material shows a much larger thermal expansion coefficient in one direction compared to the other two directions during the first heating due to frozen stresses from the pressing step during material manufacturing. These stresses are mostly released by the expansion during the first heating, so that the expansion during the second heating is more uniform. The overall volumetric expansion is the same for both heating runs. By contrast, the tempered UHMWPE material shows no significant difference between first and second heating run, as the stresses from processing could already relax in the tempering step. The irradiation treatment does not affect the values significantly for the given test set-up. KW - Lupolen KW - Ultra high molecular weight polyethylene KW - GUR KW - Coefficient of thermal expansion KW - High temperature PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563987 SN - 0142-9418 VL - 117 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-56398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Goral, Milan A1 - Wolff, Dietmar ED - Gehde, M. ED - Wagenknecht, U. ED - Bloß, P. T1 - Further investigations on the low temperature performance of rubber seals N2 - For many sealing applications low temperature performance is required. The overall understanding of the relevant influences on low temperature performance of rubber seals are summarized and the currently running investigations described. The correlation of the physical material properties with seal performance is studied. This includes as well purely static sealing applications as the performance during/after fast partial relief of seals at low temperatures. T2 - Technomer 2017 CY - Chemnitz, Germany DA - 09.11.2017 KW - Seal KW - Low temperature KW - Rubber KW - Recovery PY - 2017 SN - 978-3-939382-13-3 VL - 2017 SP - 40 EP - 40 AN - OPUS4-42845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -