TY - CONF A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Gollwitzer, Christian A1 - Jaenisch, Gerd-Rüdiger T1 - Radiographic simulator aRTist: version 2 T2 - 18th WCNDT - World conference on nondestructive testing (Proceedings) N2 - Computer simulation of radiography can be used for different purposes in NDT, such as qualification of NDT systems, optimization of radiographic parameters, feasibility analysis, model-based data interpretation, and training of NDT/NDE personnel. BAM has been working on modeling in the field of radiographic testing for many years. With the gathered theoretical background and the familiarity with practical requirements of industrial application the simulation software aRTist has been developed. This analytical simulator includes a description of the radiation source, the interaction of radiation with test pieces and flaws, and the detection process with special focus on film and digital industrial radiology. It features high processing speed with nearinteractive frame rates and a high level of realism. Here we focus on the recent developments of the simulator, notably the release of aRTist version 2. Extended functionality regarding automated virtual computed tomography now allows for arbitrary scan paths. Another program extension supports reliability investigations and provides a user interface for planning automatic simulations with varying parameters and defects. T2 - 18th WCNDT - World conference on nondestructive testing CY - Durban, South Africa DA - 16.04.2012 KW - X-ray imaging KW - Radiographic testing KW - Simulation KW - Computed tomography PY - 2012 SN - 978-0-620-52872-6 SP - 1 EP - 7 (Paper 333) AN - OPUS4-27398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Gollwitzer, Christian A1 - Fratzscher, Daniel A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger T1 - Simulation of complex scan paths for 3D reconstruction T2 - International symposium on digital industrial radiology and computed tomography (Proceedings) N2 - X-ray computed tomography (CT) is a volumetric (3D) Imaging diagnostic method, well established in the medical field, and in industrial NDE as well. Developments in industrial CT aim to extent the applicability to complex structures, which do not allow the access of all directions. This are e.g. limited view, data and angle CT applications. New reconstruction algorithms are required on one side, and the accuracy has to be improved on the other side. Numerical Simulation can support such developments by providing well defined data sets for the testing of reconstruction algorithms. This approach of virtual CT is realized within the radiographic simulator aRTist, developed by BAM. The poster shows the possibilities of this tool to consider complex scan paths. Simulated data sets have been reconstructed by an versatile backprojection algorithm. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Radiographie KW - Computer-Simulation KW - 3D-Rekonstruktion PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-243928 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 17) SP - 1 EP - 4 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Gollwitzer, Christian A1 - Lange, A. A1 - Onel, Yener A1 - Cooper, R. C. A1 - Watkins, T.R. A1 - Shyam, A. T1 - XCT discloses the Impact of Machining on Mechanical Properties of Diesel Particulate Filter Materials N2 - Microstructural changes in porous cordierite for diesel particulate filter applications caused by machining were characterized using microtensile testing and X-ray computed tomography (XCT). Young’s modulus was determined on ~215-380 m thick machined samples by digital image correlation. Results show a decrease of Young’s modulus due to machining of the thin samples. Explanation of this phenomenon was provided by XCT: the presence of debris due to machining and the variation of porosity due to removal of the outer layers were quantified and correlated with the introduction of further microcracking. T2 - ICT Conference 2018 CY - Wels, Austria DA - 06.02.2018 KW - Diesel Particulate Filter Materials KW - Mechanical Properties PY - 2018 AN - OPUS4-44778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deresch, Andreas A1 - Jechow, Mirko A1 - Gollwitzer, Christian ED - Chimenti, D.E. ED - Bond, L.J. ED - Thompson, D.O. T1 - Spectral characterization of storage phosphor imaging plates T2 - 40th Annual review of progress in quantitative nondestructive evaluation (Proceedings) N2 - This work presents attenuation and sensitivity measurements of radiographic imaging plates (IPs) with quasimonoenergetic X-rays in the 8–60 kiloelectronvolt range. The measurements are used to validate theoretical predictions. A short overview of the theoretical model is given. The model can be used to describe the sensitivity of different detector types to a wide range of X-ray energies. T2 - 40th Annual review of progress in quantitative nondestructive evaluation CY - Baltimore, Maryland, USA DA - 21.07.2013 KW - Radiography KW - Imaging plates KW - Spectral sensitivity PY - 2014 SN - 978-0-7354-1212-5 SN - 978-0-7354-1211-8 DO - https://doi.org/10.1063/1.4865040 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1581 SP - 1786 EP - 1792 PB - AIP Publishing AN - OPUS4-30757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fry, D. A1 - Ewert, Uwe A1 - Gollwitzer, Christian A1 - Neuser, E. A1 - Selling, J. T1 - Measuring microfocal spots using digital radiography JF - Materials evaluation KW - ZfP KW - Radiographie KW - Bildqualität KW - Röntgen-Röhren KW - Brennfleckmessung PY - 2012 SN - 0025-5327 VL - 70 IS - 8 SP - 981 EP - 990 PB - Society for Nondestructive Testing CY - Columbus, Ohio AN - OPUS4-26701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian T1 - On POD Estimations with Radiographic Simulator aRTist T2 - International Symposium on Digital Industrial Radiology and Computed Tomography T2 - International Symposium on Digital Industrial Radiology and Computed Tomography CY - Berlin, Germany DA - 2011-06-20 PY - 2011 AN - OPUS4-24430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Mistral, Ql T1 - New Requirements for Digital Radiographic Testing of Welds According to ISO Standards T2 - Review of Progress in Quantitative NDE, QNDE 2012 T2 - Review of Progress in Quantitative NDE, QNDE 2012 CY - Denver, CO, USA DA - 2012-07-15 PY - 2012 AN - OPUS4-26617 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Cabeza, Sandra A1 - Garces, G. T1 - Synchrotron based absorption edge tomography for §D characterization of the microstructure of MG-Y-Zn alloys N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAMline at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, absorption edge tomography at the Yttrium edge is employed to perform a non-destructive 3D characterization of the microstructure of a high strength Mg-Y-Zn alloy. The long period stacking ordered (LPSO) phase which forms fibres in this material was extracted based on the Yttrium content and the fibre length distribution was analysed. T2 - Ninth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Synchrotron KW - Computed Tomography KW - Absorption edge KW - BAMline PY - 2017 AN - OPUS4-43854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -